
3
Spark RDD

Resilient Distributed Datasets (RDDs) are the basic building block of a Spark application.
An RDD represents a read-only collection of objects distributed across multiple machines.
Spark can distribute a collection of records using an RDD and process them in parallel on
different machines.

In this chapter, we shall learn about the following:

What is an RDD?
How do you create RDDs?
Different operations available to work on RDDs
Important types of RDD
Caching an RDD
Partitions of an RDD
Drawbacks of using RDDs

The code examples in this chapter are written in Python and Scala only. If you wish to go
through the Java and R APIs, you can visit the Spark documentation page at https:/ ​/
spark.​apache.​org/ ​.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/

Spark RDD Chapter 3

[36]

What is an RDD?
RDD is at the heart of every Spark application. Let's understand the meaning of each word
in more detail:

Resilient: If we look at the meaning of resilient in the dictionary, we can see that
it means to be: able to recover quickly from difficult conditions. Spark RDD has the
ability to recreate itself if something goes wrong. You must be wondering, why
does it need to recreate itself? Remember how HDFS and other data stores achieve
fault tolerance? Yes, these systems maintain a replica of the data on multiple
machines to recover in case of failure. But, as discussed in Chapter 1, Introduction
to Apache Spark, Spark is not a data store; Spark is an execution engine. It reads
the data from source systems, transforms it, and loads it into the target system. If
something goes wrong while performing any of the previous steps, we will lose
the data. To provide the fault tolerance while processing, an RDD is made
resilient: it can recompute itself. Each RDD maintains some information about its
parent RDD and how it was created from its parent. This introduces us to the
concept of Lineage. The information about maintaining the parent and the
operation is known as lineage. Lineage can only be achieved if your data
is immutable. What do I mean by that? If you lose the current state of an object
and you are sure that previous state will never change, then you can always go
back and use its past state with the same operations, and you will always recover
the current state of the object. This is exactly what happens in the case of RDDs. If
you are finding this difficult, don't worry! It will become clear when we look at
how RDDs are created.
Immutability also brings another advantage: optimization. If you know something
will not change, you always have the opportunity to optimize it. If you pay close
attention, all of these concepts are connected, as the following diagram
illustrates:

 RDD

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[37]

Distributed: As mentioned in the following bullet point, a dataset is nothing but
a collection of objects. An RDD can distribute its dataset across a set of machines,
and each of these machines will be responsible for processing its partition of data.
If you come from a Hadoop MapReduce background, you can imagine partitions
as the input splits for the map phase.
Dataset: A dataset is just a collection of objects. These objects can be a Scala, Java,
or Python complex object; numbers; strings; rows of a database; and more.

Every Spark program boils down to an RDD. A Spark program written in Spark SQL,
DataFrame, or dataset gets converted to an RDD at the time of execution.

The following diagram illustrates an RDD of numbers (1 to 18) having nine partitions on a
cluster of three nodes:

RDD

Resilient metadata
As we have discussed, apart from partitions, an RDD also stores some metadata within it.
This metadata helps Spark to recompute an RDD partition in the case of failure and also
provides optimizations while performing operations.

The metadata includes the following:

A list of parent RDD dependencies
A function to compute a partition from the list of parent RDDs
The preferred location for the partitions
The partitioning information, in case of pair RDDs

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[38]

Right then, enough theory! Let's create a simple program and understand the concepts in
more detail in the next section.

Programming using RDDs
An RDD can be created in four ways:

Parallelize a collection: This is one of the easiest ways to create an RDD. You can
use the existing collection from your programs, such as List, Array, or Set, as
well as others, and ask Spark to distribute that collection across the cluster to
process it in parallel. A collection can be distributed with the help
of parallelize(), as shown here:

#Python
numberRDD = spark.sparkContext.parallelize(range(1,10))
numberRDD.collect()

Out[4]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

 The following code performs the same operation in Scala:

//scala
val numberRDD = spark.sparkContext.parallelize(1 to 10)
numberRDD.collect()

res4: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

From an external dataset: Though parallelizing a collection is the easiest way to
create an RDD, it is not the recommended way for the large datasets. Large
datasets are generally stored on filesystems such as HDFS, and we know that
Spark is built to process big data. Therefore, Spark provides a number of APIs to
read data from the external datasets. One of the methods for reading external
data is the textFile(). This method accepts a filename and creates an RDD,
where each element of the RDD is the line of the input file.

 In the following example, we first initialize a variable with the file path and then
use the filePath variable as an argument of textFile() method:

//Scala
val filePath = "/FileStore/tables/sampleFile.log"
val logRDD = spark.sparkContext.textFile(filePath)
logRDD.collect()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[39]

res6: Array[String] = Array(2018-03-19 17:10:26 - myApp - DEBUG -
debug message 1, 2018-03-19 17:10:27 - myApp - INFO - info message
1, 2018-03-19 17:10:28 - myApp - WARNING - warn message 1,
2018-03-19 17:10:29 - myApp - ERROR - error message 1, 2018-03-19
17:10:32 - myApp - CRITICAL - critical message with some error 1,
2018-03-19 17:10:33 - myApp - INFO - info message 2, 2018-03-19
17:10:37 - myApp - WARNING - warn message, 2018-03-19 17:10:41 -
myApp - ERROR - error message 2, 2018-03-19 17:10:41 - myApp -
ERROR - error message 3)

If your data is present in multiple files, you can make use of wholeTextFiles()
instead of using the textFile() method. The argument to wholeTextFiles()
is the directory name that contains all the files. Each element will be represented
as a key value pair, where the key will be the file name and the value will be the
whole content of that file. This is useful in scenarios where you have lots of small
files and want to process each file separately.

JSON and XML file are common inputs of wholeTextFiles() as you can
parse each file separately using a parser library.

From another RDD: As discussed in the first section, RDDs are immutable in
nature. They cannot be modified, but we can transform an RDD to another RDD
with the help of the methods provided by Spark. We shall discuss these methods
in more detail in this chapter. The following example uses filter() to
transform our numberRDD to evenNumberRDD in Python. Similarly, it also
uses filter() to create oddNumberRDD in Scala:

#Python
evenNumberRDD = numberRDD.filter(lambda num : num%2 == 0)
evenNumberRDD.collect()

Out[10]: [2, 4, 6, 8]

 The following code performs the same operation in Scala:

//Scala
val oddNumberRDD = numberRDD.filter(num => num%2 != 0)
oddNumberRDD.collect()

res8: Array[Int] = Array(1, 3, 5, 7, 9)

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[40]

From a DataFrame or dataset: You must be thinking, why would we ever create
an RDD from a DataFrame? After all, a DataFrame is an abstraction on top of an
RDD. Well, you're right! Because of this, it is advisable to use DataFrames or a
dataset over an RDD, because a DataFrame brings performance benefits.

You might need to convert an RDD from a DataFrame in some scenarios where the
following applies:

The data is highly unstructured
The data is reduced to a manageable size after heavy computations, such as joins
or aggregations, and you want more control over the physical distribution of
data using custom partitioning
You have some code written in a different programming language or legacy RDD
code

Let's create a DataFrame and convert it into an RDD:

#Python
rangeDf = spark.range(1,5)
rangeRDD = rangeDf.rdd
rangeRDD.collect()

Out[15]: [Row(id=1), Row(id=2), Row(id=3), Row(id=4)]

In the preceding code, we first created a rangeDfDataFrame with an id column (the
default column name) using Spark's range() method, which created 4 rows, from 1 to 4.
We then use the rdd method to convert it into rangeRDD.

The range(N) method creates values from 0 to N-1.

As we have now got a basic understanding of how to create RDDs, let's write a simple
program that reads a log file and returns only the number of messages with log levels
of ERROR and INFO:

$ cat sampleFile.log
2018-03-19 17:10:26 - myApp - DEBUG - debug message 1
2018-03-19 17:10:27 - myApp - INFO - info message 1
2018-03-19 17:10:28 - myApp - WARNING - warn message 1
2018-03-19 17:10:29 - myApp - ERROR - error message 1
2018-03-19 17:10:32 - myApp - CRITICAL - critical message with some error 1
2018-03-19 17:10:33 - myApp - INFO - info message 2
2018-03-19 17:10:37 - myApp - WARNING - warn message

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[41]

2018-03-19 17:10:41 - myApp - ERROR - error message 2
2018-03-19 17:10:41 - myApp - ERROR - error message 3

The preceding code shows the content of the sampleFile.log files. Each line in
sampleFile.log represents a log with its log level.

The next code snippets calculates the number of ERROR and INFO messages in the log file
using the Python API:

#Python
filePath = "/FileStore/tables/sampleFile.log"

logRDD = spark.sparkContext.textFile(filePath)

resultRDD = logRDD.filter(lambda line : line.split(" - ")[2] in
['INFO','ERROR'])\
 .map(lambda line : (line.split(" - ")[2], 1))\
 .reduceByKey(lambda x, y : x + y)

resultRDD.collect()

Out[27]: [('INFO', 2), ('ERROR', 3)]

The following code performs the same operation in Scala:

//Scala
val filePath = "/FileStore/table/sampleFile.log"

val logRDD = spark.sparkContext.textFile(filePath)

val resultRDD = logRDD.filter(line =>
Array("INFO","ERROR").contains(line.split(" -")(2)))
 .map(line => (line.split(" - ")(2), 1))
 .reduceByKey(_ + _)

resultRDD.collect()

res12: Array[(String, Int)] = Array((ERROR,3), (INFO,2))

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[42]

In the preceding two examples, we first created a filePath variable that contained the
path to our log file. We then made use of the textFile() method to create our base RDD,
that is logRDD. Under the hood, Spark adds this operation into its DAG. At the time of
execution, Spark will read our sampleFile.log and distribute it to multiple executors. In
the next line, we make use of filter() to get only those lines that have "INFO" and
"ERROR" as the log level. The filter() method accepts a function as input and returns a
Boolean. We also pipe the output of filter to a map() object, and now the problem is
reduced to the word-count problem. At this point, map() will only receive the filtered lines
and assign 1 to each record. We aggregate the records based on the log level using
reduceByKey(), which adds all the values for each log level. We finally collect our result
using the collect() method. This is the point where Spark actually starts executing the
DAG.

Transformations and actions
We have discussed some basic operations for creating and manipulating RDDs. Now it is
time to categorize them into two main categories:

Transformations
Actions

Transformation
As the name suggests, transformations help us in transforming existing RDDs. As an
output, they always create a new RDD that gets computed lazily. In the previous examples,
we have discussed many transformations, such as map(), filter(), and reduceByKey().

Transformations are of two types:

Narrow transformations
Wide transformations

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[43]

Narrow transformations
Narrow transformations transform data without any shuffle involved. These
transformations transform the data on a per-partition basis; that is to say, each element of
the output RDD can be computed without involving any elements from different partitions.
This leads to an important point: The new RDD will always have the same number of
partitions as its parent RDDs, and that's why they are easy to recompute in the case of
failure. Let's understand this with the following example:

Narrow transformations

So, we have an RDD-A and we perform a narrow transformation, such as map() or
filter(), and we get a new RDD-B with the same number of partitions as RDD-A. In
part (B), we have two, RDD-A and RDD-B, and we perform another type of narrow
transformation such as union(), and we get a new RDD-C with the number of partitions
equal to the sum of partitions of its parent RDDs (A and B). Let's look at some examples of
narrow transformations.

map()
This applies a given function to each element of an RDD and returns a new RDD with the
same number of elements. For example, in the following code, numbers from 1 to 10 are
multiplied by the number 2:

#Python
spark.sparkContext.parallelize(range(1,11)).map(lambda x : x * 2).collect()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[44]

The following code performs the same operation in Scala:

//Scala
spark.sparkContext.parallelize(1 to 10).map(_ * 2).collect()

flatMap()
This applies a given function that returns an iterator to each element of an RDD and returns
a new RDD with more elements. In some cases, you might need multiple elements from a
single element. For example, in the following code, an RDD containing lines is converted
into another RDD containing words:

#Python
spark.sparkContext.parallelize(["It's fun to learn Spark","This is a
flatMap example using Python"]).flatMap(lambda x : x.split(" ")).collect()

The following code performs the same operation in Scala:

//Scala
spark.sparkContext.parallelize(Array("It's fun to learn Spark","This is a
flatMap example using Python")).flatMap(x => x.split(" ")).collect()

filter()
The filter() transformation applies a function that filters out the elements that do not
pass the condition criteria, as shown in the following code. For example, if we need
numbers greater than 5, we can pass this condition to the filter() transformation. Let's
create an RDD of numbers 1 to 10 and filter out numbers that are greater than 5:

#Python
spark.sparkContext.parallelize(range(1,11)).filter(lambda x : x >
5).collect()

The following code performs the same operation in Scala:

//Scala
spark.sparkContext.parallelize(1 to 10).filter(_ > 5).collect()

Any function that returns a Boolean value can be used used to filter out the elements.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[45]

union()
The union() transformation takes another RDD as an input and produces a new RDD
containing elements from both the RDDs, as shown in the following code. Let's create two
RDDs: one with numbers 1 to 5 and another with numbers 5 to 10, and then concatenate
them together to get a new RDD with the numbers 1 to 10:

#Python
firstRDD = spark.sparkContext.parallelize(range(1,6))
secordRDD = spark.sparkContext.parallelize(range(5,11))
firstRDD.union(secordRDD).collect()

The following code performs the same operation in Scala:

//scala
val firstRDD = spark.sparkContext.parallelize(1 to 5)
val secordRDD = spark.sparkContext.parallelize(5 to 10)
firstRDD.union(secordRDD).collect()

The union() transformation does not remove duplicates. If you are
coming from a SQL background, union() performs the same operation as
Union All in SQL.

mapPartitions()
The mapPartitions() transformation is similar to map(). It also allows users to
manipulate elements of an RDD, but it provides more control at a per-partition basis. It
applies a function that accepts an iterator as an argument and returns an iterator as the
output. If you have done some shell scripting and you are aware of AWK programming,
then you can correlate that with mapPartitions transformation to understand it better. A
typical AWK example looks something like BEGIN { #Begin block } { #middle
block } END { #end Block }. The Begin block executes only once before reading the
file content, the middle block executes for each line in the input file, and the end block also
executes only once at the end of the file. Similarly, if you want some operations to be
performed at the beginning or end of processing all elements one by one, you can make use
of the mapPartitions() transformation. In the following code, we are multiplying each
element by 2, but this time with mapPartitions():

#Python
spark.sparkContext.parallelize(range(1,11), 2).mapPartitions(lambda
iterOfElements : [e*2 for e in iterOfElements]).collect()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[46]

The following code performs the same operation in Scala:

//scala
spark.sparkContext.parallelize(1 to 10, 2).mapPartitions(iterOfElements =>
for (e <- iterOfElements) yield e*2).collect()

One example where you might use mapPartitions() is when you need to open a
database connection at the beginning of each partition.

If you want to create an object only once and want that object to be used
during computation in each partition, you can make use of broadcast
variables.

Wide transformations
Wide transformations involve a shuffle of the data between the partitions.
The groupByKey(), reduceByKey(), join(), distinct(), and intersect() are some
examples of wide transformations. In the case of these transformations, the result will be
computed using data from multiple partitions and thus requires a shuffle. Wide
transformations are similar to the shuffle-and-sort phase of MapReduce. Let's understand
the concept with the help of the following example:

Wide transformations

We have an RDD-A and we perform a wide transformation such as groupByKey()and we
get a new RDD-B with fewer partitions. RDD-B will have data grouped by each key in the
dataset. In part (B), we have two RDDs: RDD-A, and RDD-B and we perform another type
of wide transformation such as join() or intersection() and get a new RDD-C. The
following are some examples of wide transformations.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[47]

distinct()
The distinct() transformation removes duplicate elements and returns a new RDD with
unique elements as shown. Let's create an RDD with some duplicate elements (1,2,3,4)
and use distinct() to get an RDD with unique numbers:

#Python
spark.sparkContext.parallelize([1,1,2,2,3,3,4,4]).distinct().collect()

The following code performs the same operation in Scala:

//scala
spark.sparkContext.parallelize(Array(1,1,2,2,3,3,4,4)).distinct().collect()

sortBy()
We can sort an RDD with the help of sortBy() transformation. It accepts a function that
can be used to sort the RDD elements. In the following example, we sort our RDD in
descending order using the second element of the tuple:

#Python
spark.sparkContext.parallelize([('Rahul', 4),('Aman', 2),('Shrey',
6),('Akash', 1)]).sortBy(lambda x : -x[1]).collect()

The following code performs the same operation in Scala:

//scala
spark.sparkContext.parallelize(Array(("Rahul", 4),("Aman", 2),("Shrey",
6),("Akash", 1))).sortBy(_._2 * -1).collect()

The previous code will result in this:

[('Shrey', 6), ('Rahul', 4), ('Aman', 2), ('Akash', 1)]

intersection()
The intersection() transformation allows us to find common elements between two
RDDs. Like union() transformation, intersection() is also a set operation between two
RDDs, but involves a shuffle. The following examples show how to find common elements
between two RDDs using intersection():

#Python
firstRDD = spark.sparkContext.parallelize(range(1,6))
secordRDD = spark.sparkContext.parallelize(range(5,11))
firstRDD.intersection(secordRDD).collect()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[48]

The following code performs the same operation in Scala:

//Scala
val firstRDD = spark.sparkContext.parallelize(1 to 5)
val secordRDD = spark.sparkContext.parallelize(5 to 10)
firstRDD.intersection(secordRDD).collect()

The previous code gives a result of 5.

subtract()
You can use subtract() transformation to remove the content of one RDD using another
RDD. Let's create two RDDs: The first one has numbers from 1 to 10 and the second one
has elements from 6 to 10. If we use subtract(), we get a new RDD with numbers 1 to 5:

#Python
firstRDD = spark.sparkContext.parallelize(range(1,11))
secordRDD = spark.sparkContext.parallelize(range(6,11))
firstRDD.subtract(secordRDD).collect()

The following code performs the same operation in Scala:

//scala
val firstRDD = spark.sparkContext.parallelize(1 to 10)
val secordRDD = spark.sparkContext.parallelize(6 to 10)
firstRDD.subtract(secordRDD).collect()

In the previous example, we have two RDDs: firstRDD contains elements from 1 to 10
and secondRDD contains elements 6 to 10. After applying the subtract() transformation,
we get a new RDD containing elements from 1 to 5.

cartesian()
The cartesian() transformation can join elements of one RDD with all the elements of
another RDD and results in the cartesian product of two. In the following examples,
firstRDD has elements [0, 1, 2] and secondRDD has elements ['A','B','C']. We use
cartesian() to get the cartesian product of two RDDs:

#Python
firstRDD = spark.sparkContext.parallelize(range(3))
secordRDD = spark.sparkContext.parallelize(['A','B','C'])
firstRDD.cartesian(secordRDD).collect()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[49]

The following code performs the same operation in Scala:

//scala
val firstRDD = spark.sparkContext.parallelize(0 to 2)
val secordRDD = spark.sparkContext.parallelize(Array("A","B","C"))
firstRDD.cartesian(secordRDD).collect()

Here is the output from the previous example:

//Scala
Array[(Int, String)] = Array((0,A), (0,B), (0,C), (1,A), (1,B), (1,C),
(2,A), (2,B), (2,C))

Remember these operations involve a shuffle, and therefore require lots of computing
resources such as memory, disk, and network bandwidth.

textFile() and wholeTextFiles() are also considered
transformations, as they create a new RDD from external data.

Action
You would have noticed that in every example we used, the collect() method to get the
output. To get the final result back to the driver, Spark provides another type of operation
known as actions. At the time of transformations, Spark chains these operations and
constructs a DAG, but nothing gets executed. Once an action is performed on an RDD, it
forces the evaluation of all the transformations required to compute that RDD.

Actions do not create a new RDD. They are used for the following:

Returning final results to the driver
Writing final result to an external storage
Performing some operation on each element of that RDD (for
example, foreach())

Let's discuss some of the basic actions.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[50]

collect()
The collect() action returns all the elements of an RDD to the driver program. You
should only use collect() if you are sure about the size of your final output. If the size of
the final output is huge, then your driver program might crash while receiving the data
from the executors. The use of collect() is not advised in production. The following
example collects all the elements of an RDD containing numbers from 0 to 9:

#Python
spark.sparkContext.parallelize(range(10)).collect()

Out[26]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

count()
Use count() to count the number of elements in the RDD. The following Scala code counts
the number of an RDD and returns 10 as output:

//scala
spark.sparkContext.parallelize(1 to 10).count()

res17: Long = 10

take()
The take() action returns N number of elements from an RDD. The following code returns
the first two elements from an RDD containing the numbers 0 to 9:

#Python
spark.sparkContext.parallelize(range(10)).take(2)

Out[27]: [0, 1]

top()
The top() action returns the top N elements from the RDD. The following code returns the
top 2 elements from an RDD:

#Python
spark.sparkContext.parallelize(range(10)).top(2)

Out[28]: [9, 8]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[51]

takeOrdered()
If you want to get N element based on an ordering, you can use a takeOrdered() action.
You can also make use of sortBy() transformation, followed by a take() action. Both
approaches trigger a data shuffle. In the following example, we take out 3 elements from
the RDD, containing numbers from 0 to 9, by providing our own sorting criteria:

#Python
spark.sparkContext.parallelize(range(10)).takeOrdered(3, key = lambda x: -
x)

Out[3]: [9, 8, 7]

Here, we took the first 3 elements in decreasing order.

first()
The first() action returns the first element of the RDD. The following example returns
the first element of the RDD:

#Python
spark.sparkContext.parallelize(range(10)).first()

Out[4]: 0

countByValue()
The countByValue() action can be used to find out the occurrence of each element in the
RDD. The following is the Scala code that returns a Map of key-value pair. In the
output, Map, the key is the RDD element, and the value is the number of occurrences of that
element in the RDD:

//Scala
spark.sparkContext.parallelize(Array("A","A","B","C")).countByValue()

res0: scala.collection.Map[String,Long] = Map(A -> 2, B -> 1, C -> 1)

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[52]

reduce()
The reduce() action combines the RDD elements in parallel and gives aggregated results
as output. In the following example, we calculate the sum of the first 10 natural numbers:

//Scala
spark.sparkContext.parallelize(1 to 10).reduce(_ + _)

res1: Int = 55

saveAsTextFile()
To save the results to an external data store, we can make use of saveAsTextFile() to
save your result in a directory. You can also specify a compression codec to store your data
in compressed form. Let's write our number RDD to a file:

#Python
spark.sparkContext.parallelize(range(10)).saveAsTextFile('/FileStore/tables
/result')

In the preceding example, we provide a directory as an argument, and Spark writes data
inside this directory in multiple files, along with the success file (_success).

If an existing directory is provided as an argument
to, saveAsTextFile() action, then the job will fail with
the FileAlreadyExistsException exception. This behavior is
important because we might rewrite a directory accidentally that holds
data from a heavy job.

foreach()
The foreach() function applies a function to each element of the RDD. The following
example concatenates the string Mr. to each element using foreach():

//Scala
spark.sparkContext.parallelize(Array("Smith","John","Brown","Dave")).foreac
h{ x => println("Mr. "+x) }

If you run the previous example in local mode, you will see the output. But, in the case of
cluster mode, you won't be able to see the results, because foreach() performs the given
function inside the executors and does not return any data to the driver.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[53]

This is mainly used to work with accumulators. We shall see this in more detail in Chapter
5, Spark Architecture and Application Execution Flow.

You can find more transformations and actions at https:/ ​/​spark. ​apache. ​org/ ​docs/ ​2. ​3.
0/​rdd-​programming- ​guide. ​html#transformations. ​

Types of RDDs
RDDs can be categorized in multiple categories. Some of the examples include the
following:

Hadoop RDD Shuffled RDD Pair RDD
Mapped RDD Union RDD JSON RDD
Filtered RDD Double RDD Vertex RDD

We will not discuss all of them in this chapter, as it is outside the scope of this chapter. But
we will discuss one of the important types of RDD: pair RDDs.

Pair RDDs
A pair RDD is a special type of RDD that processes data in the form of key-value pairs. Pair
RDD is very useful because it enables basic functionalities such as join and
aggregations. Spark provides some special operations on these RDDs in an optimized
way. If we recall the examples where we calculated the number of INFO and ERROR
messages in sampleFile.log using reduceByKey(), we can clearly see the importance
of the pair RDD.

One of the ways to create a pair RDD is to parallelize a collection that contains elements in
the form of Tuple. Let's look at some of the transformations provided by a pair RDD.

groupByKey()
Elements having the same key can be grouped together with the help of a groupByKey()
transformation. The following example aggregates data for each key:

#Python
pairRDD = spark.sparkContext.parallelize([(1, 5),(1, 10),(2, 4),(3, 1),(2,
6)])
result = pairRDD.groupByKey().collect()
for pair in result:

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#transformations.

Spark RDD Chapter 3

[54]

 print 'key -',pair[0],', value -', list(pair[1])

Output:
key - 1 , value - [5, 10]
key - 2 , value - [4, 6]
key - 3 , value - [1]

The following code performs the same operation in Scala:

//Scala
val pairRDD = spark.sparkContext.parallelize(Array((1, 5),(1, 10),(2,
4),(3, 1),(2, 6)))
val result = pairRDD.groupByKey().collect()
result.foreach {
 pair => println("key - "+pair._1+", value -"+pair._2.toList)
}

Output:
key - 1, value -List(5, 10)
key - 2, value -List(4, 6)
key - 3, value -List(1)

The groupByKey() transformation is a wide transformation that shuffles data between
executors based on the key. An important point here is to note that groupByKey() does not
aggregate data, it only groups is based on the key. The groupByKey() transformation
should be used with the caution. If you understand your data really well,
then groupByKey() can bring some advantages in some scenarios. For example, let's
assume you have a key-value data, where the key is the country code and value is the
transaction amount, and your data is highly skewed based on the fact that more than 90%
of your customers are based in the USA. In this case, if you use groupByKey() to group
your data, then you might face some issues because Spark will shuffle all the data and try
to send records with the USA to a single machine. This might result in a failure. There are
some techniques such as salted keys to avoid such scenarios.

Despite this drawback, groupByKey can be very useful in some scenarios. If you know
your data is not skewed and you want to compute multiple aggregations such as max, min,
and average using the same underlying data, then you can first group the elements using
groupByKey() and persist it.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[55]

reduceByKey()
A reduceByKey() transformation is available on Pair RDD. It allows aggregation of data
by minimizing the data shuffle and performs operations on each key in parallel.
A reduceByKey() transformation first performs the local aggregation within the executor
and then shuffles the aggregated data between each node. In the following example, we
calculate the sum for each key using reduceByKey:

#Python
pairRDD = spark.sparkContext.parallelize([(1, 5),(1, 10),(2, 4),(3, 1),(2,
6)])
pairRDD.reduceByKey(lambda x,y : x+y).collect()

Output:
[(1, 15), (2, 10), (3, 1)]

The following code performs the same operation in Scala:

//Scala
val pairRDD = spark.sparkContext.parallelize(Array((1, 5),(1, 10),(2,
4),(3, 1),(2, 6)))
pairRDD.reduceByKey(_+_).collect()

Output:
Array[(Int, Int)] = Array((1,15), (2,10), (3,1))

A reduceByKey() transformation can only be used for associative
aggregations, for example: (A+B) + C = A + (B+C).

sortByKey()
The sortByKey() can be used to sort the pair RDD based on keys. In the following
example, we first create an RDD by parallelizing a list of tuples and then sort it by the first
element of the tuple:

#Python
pairRDD = spark.sparkContext.parallelize([(1, 5),(1, 10),(2, 4),(3, 1),(2,
6)])
pairRDD.sortByKey().collect()

Output:
[(1, 5), (1, 10), (2, 4), (2, 6), (3, 1)]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[56]

By default, sortByKey() sorts elements in ascending order, but you can change the sorting
order by passing your custom ordering. For example, sortByKey(keyfunc =lambda k:
-k) will sort the RDD in descending order.

join()
The join() transformation will join two pair RDDs based on their keys. The following
example joins data based on the country and returns only the matching records:

//Scala
val salesRDD = spark.sparkContext.parallelize(Array(("US",20),("IND",
30),("UK",10)))
val revenueRDD = spark.sparkContext.parallelize(Array(("US",200),("IND",
300)))

salesRDD.join(revenueRDD).collect()

Output:
Array[(String, (Int, Int))] = Array((US,(20,200)), (IND,(30,300)))

There are some more transformations available on pair RDD such as aggregateByKey(),
cogroup(), leftOuterJoin(), rightOuterJoin(), subtractByKey(), and more. Some
of the special actions include countByKey(), collectAsMap(), and lookup().

Caching and checkpointing
Caching and checkpointing are some of the important features of Spark. These operations
can improve the performance of your Spark jobs significantly.

Caching
Caching data into memory is one of the main features of Spark. You can cache large
datasets in-memory or on-disk depending upon your cluster hardware. You can choose to
cache your data in two scenarios:

Use the same RDD multiple times
Avoid reoccupation of an RDD that involves heavy computation, such as join()
and groupByKey()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[57]

If you want to run multiple actions of an RDD, then it will be a good idea to cache it into
the memory so that recompilation of this RDD can be avoided. For example, the following
code first takes out a few elements from the RDD and then returns the count of the
elements:

//Scala
val baseRDD = spark.sparkContext.parallelize(1 to 10)
baseRDD.take(2)
baseRDD.count()

The following code makes use of cache() to make the application efficient:

//Scala
val baseRDD = spark.sparkContext.parallelize(1 to 10)
baseRDD.cache() //Caching baseRDD
baseRDD.take(2)
baseRDD.count()

Spark will compute baseRDD twice to perform take() and count() actions. We cache our
baseRDD and then run the actions. This computes the RDD only once and performs the
action on top of cached data. In this example, there might not be much difference in the
performance, as here we are dealing with very small datasets. But you can imagine the
bottleneck in the case of big data.

Spark does not cache the data immediately as soon as we write the cache() operation. But
it makes a note of this operation, and once it encounters the first action, it will compute the
RDD and cache it based on the caching level.

The following table lists multiple data persistence levels provided by Spark:

Level Definition
MEMORY_ONLY Stores data in memory as unserialized Java objects
MEMORY_ONLY_SER Stores data in memory but as serialized Java objects
MEMORY_AND_DISK Unserialized Java objects in memory and remaining serialized data on disk
MEMORY_AND_DISK_SER Serialized Java objects in memory plus remaining serialized data on disk
DISK_ONLY Stores data on disk
OFF_HEAP Stores serialized RDD off-heap in Techyon (Spark's in-memory storage)

You can replicate the cached data on two nodes by writing _2 at the end of
the persisting level.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[58]

One important point to note here is that in the case of the MEMORY_ONLY caching level, if
some of the data doesn't fit into the memory, the remaining data is not stored inside the
disk by default. The remaining partitions are recomputed at the time of execution. Cache is
not a transformation nor an action.

It is recommended to unpersist your cached RDDs once you have finished
with that RDD. You can call unpersist(), which removes the data from
memory.

Checkpointing
The life cycle of the cached RDD will end when the Spark session ends. If you have
computed an RDD and you want it to use in another Spark program without recomputing
it, then you can make use of the checkpoint() operation. This allows storing the RDD
content on the disk, which can be used for the later operations. Let's discuss this with the
help of an example:

#Python
baseRDD = spark.sparkContext.parallelize(['A','B','C'])
spark.sparkContext.setCheckpointDir("/FileStore/tables/checkpointing")
baseRDD.checkpoint()

We first create a baseRDD and set a checkpointing directory using setCheckpointDir()
method. Finally, we store the content of baseRDD using checkpoint().

Understanding partitions
Data partitioning plays a really important role in distributed computing, as it defines the
degree of parallelism for the applications. Understating and defining partitions in the right
way can significantly improve the performance of Spark jobs. There are two ways to control
the degree of parallelism for RDD operations:

repartition() and coalesce()
partitionBy()

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[59]

repartition() versus coalesce()
Partitions of an existing RDD can be changed using repartition() or coalesce(). These
operations can redistribute the RDD based on the number of partitions provided.
The repartition() can be used to increase or decrease the number of partitions, but it
involves heavy data shuffling across the cluster. On the other hand, coalesce() can be
used only to decrease the number of partitions. In most of the cases, coalesce() does not
trigger a shuffle. The coalesce() can be used soon after heavy filtering to optimize the
execution time. It is important to notice that coalesce() does not always avoid shuffling.
If the number of partitions provided is much smaller than the number of available nodes in
the cluster then data will be shuffled across some node, but coalesce() will still give a
better performance than repartition(). The following diagram shows the difference
between repartition() and coalesce():

Repartition and Coalesce

The repartition() is not that bad after all. In some cases, when your job is not using all
the available slots, you can repartition your data to run it faster.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[60]

partitionBy()
Any operation that shuffles the data accepts an additional parameter, that is, degrees of
parallelism. This allows users to provide the number of partitions for the produced RDD.
The following example shows how you can change the number of partitions of the new
RDD by passing an additional parameter:

//Scala
val baseRDD = spark.sparkContext.parallelize(Array(("US",20),("IND",
30),("UK",10)), 3)
println(baseRDD.getNumPartitions)

Output:
3

The following code changes the number of partitions of the new RDD:

//Scala
val groupedRDD = baseRDD.groupByKey(2)
println(groupedRDD.getNumPartitions)

Output:
2

The baseRDD has 3 partitions. We have passed an additional parameter to groupByKey
which will tell Spark to produce groupedRDD with 2 partitions.

Spark also provides partitionBy() operation, which can be used to control the number of
partitions. A partitioning function can be passed as an argument to partitionBy() to
redistribute the data of an RDD. This is quite useful in some operations, such as join().
Let's understand this with the help of an example:

//Scala
import org.apache.spark.HashPartitioner

val baseRDD = spark.sparkContext.parallelize(Array(("US",20),("IND",
30),("UK",10)), 3)
baseRDD.partitionBy(new HashPartitioner(2)).persist()

This shows the usage of partitionBy(). We have passed a HashPartitioner() that will
redistribute the data based on the key values and create two partitions of baseRDD. Spark
can take advantage of this information and minimize the data shuffle during the join()
transformation.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Spark RDD Chapter 3

[61]

It is advisable to persist the RDD after repartitioning if the RDD is going
to be used frequently.

Drawbacks of using RDDs
An RDD is a compile-time type-safe. That means, in the case of Scala and Java, if an
operation is performed on the RDD that is not applicable to the underlying data type, then
Spark will give a compile time error. This can avoid failures in production.

There are some drawbacks of using RDDs though:

RDD code can sometimes be very opaque. Developers might struggle to find out
what exactly the code is trying to compute.
RDDs cannot be optimized by Spark, as Spark cannot look inside the lambda
functions and optimize the operations. In some cases, where a filter() is piped
after a wide transformation, Spark will never perform the filter first before the
wide transformation, such as reduceByKey() or groupByKey().
RDDs are slower on non-JVM languages such as Python and R. In the case of
these languages, a Python/R virtual machine is created alongside JVM. There is
always a data transfer involved between these VMs, which can significantly
increase the execution time.

Summary
In this chapter, we first learned about the basic idea of an RDD. We then looked at how we
can create RDDs using different approaches, such as creating an RDD from an existing
RDD, from an external data store, from parallelizing a collection, and from a DataFrame
and datasets. We also looked at the different types of transformations and actions available
on RDDs. Then, the different types of RDDs were discussed, especially the pair RDD. We
also discussed the benefits of caching and checkpointing in Spark applications, and then we
learned about the partitions in more detail, and how we can make use of features like
partitioning, to optimize our Spark jobs.

In the end, we also discussed some of the drawbacks of using RDDs. In the next chapter,
we'll discuss the DataFrame and dataset APIs and see how they can overcome these
challenges.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
 Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:17:59.

C
op

yr
ig

ht
 ©

 2
01

9.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

