Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset

In the previous chapter, we learned about RDD concepts and APIs. In this chapter, we will
explore DataFrame APIs, which are abstractions over RDDs, and also discuss the dataset
APIs that come with Spark 2.0 to provide various optimizations over DataFrames.

The following topics will be covered in this chapter:

e DataFrames
e Datasets

DataFrames

As we already mentioned, DataFrame APIs are abstractions of RDD APIs. DataFrames are
distributed collections of data that are organized in the form of rows and columns. In other
words, DataFrames provide APIs to efficiently process structured data that's available in
different sources. The sources could be an RDD, different types of files in a filesystem, any
RDBMS, or Hive tables.

The features of DataFrames are as follows:

e DataFrames can process data that's available in different formats, such as CSV,
AVRO, and JSON, or stored in any storage media, such as Hive, HDFS, and
RDBMS

e DataFrames can process data volumes from kilobytes to petabytes

e Use the Spark-SQL query optimizer to process data in a distributed and
optimized manner

e Support for APIs in multiple languages, including Java, Scala, Python, and R

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

Creating DataFrames

To start with, we need a Spark session object, which will be used to convert RDDs into
DataFrames, or to load data directly from a file into a DataFrame.

We are using the sales dataset in this chapter. You can get the dataset file, along with the
code files for this chapter, from the following link: https://github.com/PacktPublishing/
Apache-Spark-Quick-Start-Guide:

//Scala

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder () .appName ("Spark DataFrame
example") .config("spark.some.config.option", "value") .getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

//Java

import org.apache.spark.sql.SparkSession;

SparkSession spark = SparkSession.builder () .appName ("Java Spark DataFrame
example") .config("spark.some.config.option", "value") .getOrCreate();

#Python

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName ("Python Spark DataFrame
example") .config("spark.some.config.option", "value") .getOrCreate()

Source: https://spark.apache.org/docs/latest/sql-programming-guide.
html#starting-point-sparksession.

Once the spark session has been created in the language of your choice, you can either

convert an RDD into a DataFrame or load data from any file storage in to a DataFrame:

//Scala

val sales_df = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt")

// Displays the content of the DataFrame to stdout
sales_df.show()

//Java

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

Dataset<Row> df_sales = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt");

// Displays the content of the DataFrame to stdout

sales_df.show()

[63]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://github.com/PacktPublishing/Apache-Spark-Quick-Start-Guide
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession
https://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession

Spark DataFrame and Dataset Chapter 4

#Python

sales_df = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt")

Displays the content of the DataFrame to stdout
sales_df.show()

For files in HDFS and S3, the filepath format will have hdfs:// or $3://
instead of file://.

If files do not have header information in them, you can skip the (header,
true) option.

Data sources

Spark SQL allows users to query a wide variety of data sources. These sources could be
files, such as Java Database Connectivity (JDBC).

There are a couple of ways to load data. Let's take a look at both methods:
e Load data from parquet:

//Scala
val sales_df = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt")

sales_df.write.parquet ("sales.parquet")

val parquet_sales_DF = spark.read.parquet ("sales.parquet")
parquet_sales_DF.createOrReplaceTempView ("parquetSales")

val ipDF = spark.sql("SELECT ip FROM parquetSales WHERE id BETWEEN
10 AND 19")
ipDF .map (attributes => "IPS: " + attributes(0)) .show()

//Java

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

Dataset<Row> df_sales = spark.read.option("sep",

"\t") .option("header",

"true") .csv("file:///opt/data/sales/sample_10000.txt");

// Write data to parquet file
df_sales.write () .parquet ("sales.parquet") ;

// Parquet preserve the schema of file

[64]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

Dataset<Row> parquetSalesDF =
spark.read() .parquet ("sales.parquet");

parquetSalesDF.createOrReplaceTempView ("parquetSales");
Dataset<Row> ipDF = spark.sql ("SELECT ip FROM parquetSales WHERE id
BETWEEN 10 AND 19");
Dataset<String> ipDS = ipDF .map (
(MapFunction<Row, String>) row -> "IP: " + row.getString(0),
Encoders.STRING());
ipDS.show () ;

#Python
sales_df = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt")

sales_df.write.parquet ("sales.parquet")
parquetSales = spark.read.parquet ("sales.parquet")

parquetSales.createOrReplaceTempView ("parquetSales")

ip = spark.sql ("SELECT ip FROM parquetsales WHERE id >= 10 AND id
<= 19")

ip.show()

¢ Load data from JSON:

//Scala
val sales_df = spark.read.option("sep", "\t").option("header",
"true") .csv("file:///opt/data/sales/sample_10000.txt")

sales_df.write.json("sales.json")

val json_sales_DF = spark.read.json("sales.json")
json_sales_DF.createOrReplaceTempView (" jsonSales")

var ipDF = spark.sql ("SELECT ip FROM jsonSales WHERE id BETWEEN 10
AND 19")
ipDF .map (attributes => "IPS: " + attributes(0)) .show()

[65]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

DataFrame operations and associated functions

DataFrames support untyped transformations with the following operations:

e printSchema: This prints out the mapping for a Spark DataFrame in a tree
structure. The following code will give you a clear idea of how this operation
works:

//Scala

import spark.implicits._

// Print the schema in a tree format
sales_df.printSchema ()

//Java
import static org.apache.spark.sql.functions.col;

// Print the schema in a tree format
sales_df.printSchema() ;

#Python
Print the schema in a tree format

sales_df.printSchema ()

The output you get should look like this:

e select: This allows you to select a set of columns from a DataFrame. The
following code will give you a clear idea of how this operation works:

//Scala
import spark.implicits._
sales_df.select ("firstname") .show()

//Java
import static org.apache.spark.sql.functions.col;
sales_df.select ("firstname") .show()

[66]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

#Python
sales_df.select ("firstname") .show()

The output you get should look like this:

e filter: This allows you to filter rows from a DataFrame based on certain
conditions. The following code will give you a clear idea of how this operation
works:

//Scala
import spark.implicits._
sales_df.filter ($"id" < 50) .show()

//Java
import static org.apache.spark.sql.functions.col;
sales_df.filter(col("id") .gt (9990)) .show();

#Python
sales_df.filter(sales_df['id'] < 50) .show()

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

[67]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

The output you get should look like this:

e groupBy: This allows you to group rows in a DataFrame based on a set of
columns, and apply aggregated functions such as count (), avg () , and so on on
the grouped dataset. The following code will give you a clear idea of how this
operation works:

//Scala
import spark.implicits._
sales_df.groupBy ("ip") .count () . show ()

//Java
import static org.apache.spark.sql.functions.col;
sales_df.groupBy ("ip") .count () .show() ;

#Python
sales_df.groupBy ("ip") .count () . show ()

[68]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

The output you get should look like this:

A complete list of DataFrame functions that can be used with these operations is available
here:

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.
functionss$.

Running SQL on DataFrames

Other than DataFrame operations and functions, DataFrames also allow you to run SQL
directly on data. For this, all we need to do is create temporary views on DataFrames. These
views are categorized as local or global views.

Temporary views on DataFrames

This feature enables developers to run SQL queries in a program, and get the result as a
DataFrame:

//Scala
sales_df.createOrReplaceTempView ("sales")

[69]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions%24

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

val sqlDF = spark.sql ("SELECT * FROM sales")
sqlDF . show ()

//Java

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;
sales_df.createOrReplaceTempView ("sales");
Dataset<Row> sqlDF = spark.sql ("SELECT * FROM sales");
sqlDF.show () ;

#Python
sales_df.createOrReplaceTempView ("sales")
sqlDF = spark.sql ("SELECT * FROM sales")
sqlDF . show ()

Global temporary views on DataFrames

Temporary views only last for the session in which they are created. If we want to have
views available across various sessions, we need to create Global Temporary Views. The
view definition is stored in the default database, global_temp. Once a view is created, we
need to use the fully qualified name to access it in a query:

//Scala

sales_df.createGlobalTempView ("sales")

// Global temporary view is tied to a system database ‘global_temp’
spark.sql ("SELECT * FROM global_temp.sales") .show()
spark.newSession () .sql ("SELECT * FROM global_temp.sales") .show ()

//Java

sales_df.createGlobalTempView ("sales");

spark.sql ("SELECT * FROM global_temp.sales") .show();
spark.newSession () .sql ("SELECT * FROM global_temp.sales") .show();

#Python

sales_df.createGlobalTempView ("sales")

Global temporary view is tied to a system database “global_temp’
spark.sql ("SELECT * FROM global_temp.sales") .show()
spark.newSession () .sql ("SELECT * FROM global_temp.sales") .show ()

[70]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset

Datasets

Datasets are strongly typed collections of objects. These objects are usually domain-specific
and can be transformed in parallel using relational or functional operations.

These operations are further categorized into actions and transformations. Transformations
are functions that generate new datasets, while actions compute datasets and return the
transformed results. Transformation functions include Map, FlatMap, Filter, Select, and
Aggregate, while Action functions include count, show, and save to any filesystem.

The following instructions will help you create a dataset from a CSV file:

1. Initialize SparkSession:

//Scala

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder () .appName ("Spark DataSet
example") .config("spark.config.option", "value") .getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

//Java

import org.apache.spark.sql.SparkSession;

SparkSession spark = SparkSession.builder () .appName ("Java Spark
DataFrame example") .config("spark.config.option",

"value") .getOrCreate();

#Python

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName ("Python Spark DataFrame
example") .config("spark.config.option", "value") .getOrCreate()

2. Define an encoder for this CSV:

case class Sales (id: Int, firstname: String,lastname:
String, address: String,city: String,state: String,zip: String,ip:
String, product_id: String,date_of_purchase: String)

3. Load the dataset from the CSV with type sales:

//Scala

import org.apache.spark.sql.types._

import org.apache.spark.sql.Encoders

val sales_ds = spark.read.option("sep", "\t").option("header",

"true") .csv("file:///opt/data/sales/sample_10000.txt") .withColumn ("

id", 'id.cast (IntegerType)) .as[Sales]

Chapter 4

[71]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset

Chapter 4

// Displays the content of the Dataset to stdout
sales_ds.show()

//Java

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

Dataset<Row> sales_ds spark.read.option ("sep",

"\t") .option("header",

"true") .csv("file:///opt/data/sales/sample_10000.txt");
// Displays the content of the Dataset to stdout
sales_ds.show()

#Python

sales_ds spark.read.option ("sep",
"true") .csv("file:///opt/data/sales/sample_10000.txt")
Displays the content of the Dataset to stdout
sales_ds.show()

"\t") .option("header",

The following image shows how we can create a Dataset of Sales CSV data, along with

a Sales encoder defined for a dataset:

scala>
import

import org.apache.spark.sql.types._
org.apache.spark.sql.types._
scala>
import

import org.apache.spark.sql.Encoders
org.apache.spark.sql.Encoders

scala>
import

import org.apache.spark.sql.SparkSession
org.apache.spark.sql.SparkSession

").config("spark.config.option”, "value").getOrCreate(}
; some configuration may not take effect.
on@733Fa95c

scala> val spark = SparkSession.builder{).appName("Spark DataSet example
19/81/23 28:12:28 WARN SparkSession$Builder: Using an existing SparkSes
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sgl.SparkSe

scala> case class Sales (id: Int, firstname: String,lastname: String,address: String,city: String,state: String,zip: String,ip: String,product_id:
defined class Sales

"true").csw("file:///opt/data/sample_18888.txt") .withColumn("id",

scala> val sales_ds = spark.read.option{"sep", "\t").option('header",

sales_ds: org.apache.spark.sql.Dataset(Sales] = [id: int, firstname: string ... 8 more fields]

scala> sales_ds.showl)

| id|firstname| lastname| address| city| state| zip| ip|product_id| dop
| 8| Zena| Ross|41228 West India Ln.| powell| Tennessee|21558|192.168.56.127 | PI_89|13/6/2014
| 1] Eleine| Bishop|15983 North North...|Hawaiian Gardens| Alaska|@86429(192.168.56.105| PI_B3| 8/6/2014
| 2| Sage| Carroll| 6888 Greenland Ct. | Guayanilla| Nevada |88899| 192.168.56.48| PI_83|13/6/2014
[E] Cade |Singleton| 64821 South Bulga...| Derby | Missouri|11233]192.168.56.171| PI_86|14/6/2014
| 4] Abra| Wright|58155 South Mongo... | Port Jervis| ey|17751| 192.168.56.52| PI_89|11/6/2014
| 5| stone| Palmer|12191 West Armeni...| Henderson | |@3568| 192.168.56.85| PI_BB| 8/6/2014
| 6| Regina| Bryant|29873 Henderson Ct.| Texarkana | 192.168.56.5| PI_18|11/6/2014
| 7| Donovan| Aguirre|77718 East Farmin...| Winston-Salem| New York|95234|192.168.56.114| PI_B5| 9/6/2014
| B Aileen| Mendoza|46855 East Russia...| Schenectady | T1linois|68284| 192.168.56.51| PI_B2(13/6/2014
| 9 Mariam| Henson| 84567 Gambia Ct.| Owensboro | Hawaii|@9146(192.168.56.214| PI_87|13/6/2014
| 18] Silas| Hughes|B6535 North Ghana...| Beverly| Virginia|@B642|192.168.56.253| PI_83|12/6/2014

String,dop: String)

'id.cast(IntegerType)).as[Sales]

Important differences in a dataset compared to DataFrames are as follows:

¢ Defining a case class to define types of columns in CSV

exact type using the withColumn property
e The output is a dataset of Type Sales, nota DataFrame

e If the interpreter takes up a different type by inference, we need to cast to the

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

[72]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

We need to check the correctness of the data, as it is possible that the actual data does not
match with the Type defined. There are three options to deal with this situation:

1. Permissive: This is the default mode in which, if the data type is not matched
with the schema type, the data fields are replaced with null:

val sales_ds = spark.read.option("sep", "\t") .option("header",
"true") .option ("mode",

"PERMISSIVE") .csv("file:///opt/data/sales/sample_10000.txt") .withCo
lumn ("id", 'id.cast (IntegerType)) .as[Sales]

2. DROPMALFORMED: As the name suggests, this mode will drop records where the
parser finds a mismatch between the data type and schema type:

val sales_ds = spark.read.option("sep", "\t").option("header",
"true") .option ("mode",

"DROPMALFORMED") .csv("file:///opt/data/sales/sample_10000.txt") .wit
hColumn ("id", 'id.cast (IntegerType)) .as[Sales]

3. FAILFAST: This mode will abort further processing on the first mismatch between
data type and schema type:

val sales_ds = spark.read.option("sep", "\t").option("header",
"true") .option ("mode",

"FAILFAST") .csv("file:///opt/data/sales/sample_10000.txt") .withColu
mn ("id", 'id.cast (IntegerType)) .as[Sales]

Datasets work on the concept of lazy evaluation, which means for every transformation, a
new dataset definition is created, but no execution happens at the backend. In this case, it
only creates a logical plan that describes the computation flow required to execute the
transformation. The actual evaluation happens once we have an action being called on the
dataset. With an action, the Spark query optimizer optimizes the logical plan and creates a
physical plan of execution. This physical plan then computes the datasets in a parallel and
distributed way. The explain function is used to check for the logical and optimized
physical plan.

[73]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

The following image shows the explain plan for the sales dataset:

/! Loading dataset from CSV

import org.apache.spark.sgl.types._

import org.apache.spark.sqgl.Encoders

var sales_ds = spark.read.option("sep”, "\t").option("header", "true").csv("/FileStore/tables/sample_10088.txt").withColumn("id",
'id.cast(IntegerType)).as[Sales]

// Displays the content of the Dataset to stdout

sales_ds.explain

+ {1) Spark Jobs
» Job 219 View (Stages: 1/1)

== Physical Plan ==

#(1) Project [cast(id#6994 as int) AS id#7016, firstname#6995, lastname#6996, address#6997, city#6998, state#6999, zip#7000, ip#7001, product_id#78
02, dop#7003, _cle#7004]

+- *(1) FileScan csv [1d#6994,firstname#6995,lastname#6996,address#6997,city#6998,state#6999,zipHT000,1p#7001,product_id#7002,dop47003, _cl0#7004] B
atched: false, DataFilters: [], Format: CSV, Location: InMemoryFileIndex[dbfs:/FileStore/tables/sample_168080.txt], PartitionFilters: [], PushedFilt
ers: [], ReadSchema: struct<id:string,firstname:string,lastname:string,address:string,city:string,state:string,zip:str...

import org.apache.spark.sql.SparkSession

spark: org.apache.spark.sqgl.SparkSession = org.apache.spark.sql.SparkSession@55683c96@

import spark.implicits._

defined class Sales

import org.apache.spark.sql.types._

import org.apache.spark.sqgl.Encoders

sales_ds: org.apache.spark.sql.Dataset[Sales] = [id: int, firstname: string ... 9 more fields]

Encoders

Encoders are required to map domain-specific objects of type T to Spark's type system or
internal Spark SQL representation. An Encoder of type T is a trait represented by
Encoder [T].

Encoders are available with every Spark session, and you can explicitly import them with
spark implicits as import spark.implicits._.

For example, given an Employee class with the fields name (String) and salary (int), an
encoder is used as an indicator to serialize the Employee object to binary form. This binary
structure provides the following advantages:

e Occupies less memory
e Data is stored in columnar format for efficient processing

[74]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

Let's take a look at the major encoder features:

e Fast serialization: Encoders are used for runtime code with custom bytecode
generation for serialization and deserialization. These are significantly faster than
Java and Kryo serializers. Along with faster serialization, encoders also provide
significant data compression, which helps with better network transfers.
Encoders produce data in Tungsten binary format, which also allows different
operations in place, rather than materializing data to an object.

e Support for semi-structured data: Encoders allow Spark to process complex
JSON with type-safe Scala and Java.

Let's look at an example. Consider the following sales dataset in JSON structure, or use
the previous commands to write the JSON file from a CSV file:

"id": "1", "firstname": "Elaine", "lastname": "Bishop", "address": "15903
North North Adams Blvd.", "city": "Hawaiian Gardens", "state":

"Alaska", "zip": "06429", "ip": "192.168.56.105", "product_id": "PI_O03",
"dop":"8/6/2018"}

{"id": "2", "firstname": "Sage", "lastname": "Carroll", "address": "6880
Greenland Ct.", "city": "Guayanilla", "state": "Nevada","zip": "08899",
"ip": "192.168.56.40", "product_id": "PI_04", "dop":"13/6/2018"}

To convert JSON data fields into a type, we can define a case class witha
structure and map input data in to the defined structure. Columns in the case
class are mapped to keys in JSON, and types are mapped as defined in the case
class:

case class Sales(id: String, firstname: String,lastname: String, address:
String,city: String,state: String,zip: String,ip: String,product_id:
String,dop: String)

val sales = sglContext.read.json("sales.json") .as[Sales]

sales.map(s => s"${s.firstname} purchased product ${s.product_id} on
${s.dop}")

Encoders also check the type of the expected schema with data, and give an error in the
case of any type mismatch. For example, if we define a byte type in a class where the
encoder finds more integers, it will complain instead of processing TBs of data with auto
casting integers to byte and losing precision:

case class Sales(id: byte)

val sales= sqglContext.read.json("sales.json") .as[Sales]

[75]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark DataFrame and Dataset Chapter 4

org.apache.spark.sql.AnalysisException: Cannot upcast id
from int to smallint as it may truncate

Encoders can also handle complex types, including arrays and maps.

Internal row

Encoders are coded as traits in Spark 2.0. They can be thought of as an efficient means of
serialization/deserialization for Spark SQL 2.0, similar to SerDes in Hive:

trait Encoder[T] extends Serializable {
def schema: StructType
def clsTag: ClassTag|[T]

}

Encoders internally convert type T to Spark SQL's InternalRow type, which is the binary
row representation.

Creating custom encoders

Encoders can be created based on Java and Kryo serializers. Encoder factory objects are
available in the org.apache.spark. sql package:

import org.apache.spark.sql.Encoders

// Normal Encoder
scala> Encoders.LONG
resl: org.apache.spark.sql.Encoder[Long] = class[value[0]: bigint]

// Kryo and Java Serialization Encoders
case class Sales(id: String, firstname: String, product_id: Boolean)

scala> Encoders.kryo[Sales]
res3: org.apache.spark.sql.Encoder[Sales] = class[value[0]: binary]

scala> Encoders.javaSerialization[Sales]
res5: org.apache.spark.sql.Encoder[Sales] = class[value[0]: binary]

// Scala tuple encoders

scala> Encoders.tuple (Encoders.scalalong, Encoders.STRING,
Encoders.scalaBoolean)

res9: org.apache.spark.sql.Encoder[(Long, String, Boolean)] = class[_1[0]:
bigint, _2[0]: string, _3[0]: boolean]

[76]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:15.

Spark DataFrame and Dataset Chapter 4

Summary

In this chapter, we started by loading a dataset into a DataFrame, and then applying
different transformations to the DataFrame. Later, we went through the latest additions of
dataset APIs and encoders in Spark 2.0.

In the next chapter, we will go through Spark's architecture and its components in detail.
We will also see, in detail, the flow of a Spark application once it is submitted.

[77]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:15.

Spark SQL

In our previous chapter, we learned about DataFrames and datasets and how we can use or
write custom encoders to have type-safe operations on datasets. This chapter explains the
SQL component of Spark, which helps developers working on Hive or familiar with
RDBMS SQL to use a similar style in Spark.

We will be covering the following topics in this chapter:

e Spark metastore
e SQL language manual
e SQL database using Java Database Connectivity (JDBC)

Spark SQL

Spark SQL is an abstraction of data using SchemaRDD), which allows you to define
datasets with schema and then query datasets using SQL. To start with, you just have to
type spark-sqgl in the Terminal with Spark installed. This will open a Spark shell for you.

Spark metastore

To store databases, table names, and schema, Spark installs a default
database, metastore.db, at the same location from where you started the SQL shell.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:28.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark SQL Chapter 6

Using the Hive metastore in Spark SQL

Spark provides the flexibility to leverage the existing Hive metastore. This will allow users
to access table definitions as available to Hive in Spark and to run the same HiveQL in
Spark. The difference will be that queries running on Spark will be executed as per the
Spark execution plan, and underlying data will be processed as per Spark execution and
optimizations. These queries wont follow the MapReduce path, which is the default in
Hive.

For many queries, users can see a tremendous performance gain with the Spark execution
engine compared to the MapReduce engine, due to the optimized plan of execution in
Spark.

Hive configuration with Spark

Hive on Spark gives Hive the capacity to use Apache as its execution motor. We will be
using the following steps to configure Hive:

1. Copy hive-site.xml to the Spark configuration folder as follows:
cp $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf/
2. Add the following line to ~/ .bash_profile:

export SPARK_CLASSPATH=$HIVE_HOME/lib/mysql-connector-java-3.1.14-
bin.jar

source ~/.bash_profile
3. Run the following command to access Spark SQL:
spark-sql

Check for existing databases and tables with the Show Databases and Show Tables
commands. You'll find all of the databases and corresponding tables that you have in Hive.

SQL language manual

Spark SQL provides a set of Data Definition Languages (DDLs) and Data Manipulation
Languages (DMLs). These are the same as, or very similar to, Hive and other basic SQL
language specifications.

[93]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:28.

Spark SQL Chapter 6

Database

In this section, we will be looking at some operations that we can perform on a database:

1. Create Database: We will be using the following command to create a
database:

Create Database if not exists mydb
location '/opt/sparkdb';

The output following execution will be similar to this:

[spark-sql> show databases;

default

Time taken: 2.584 seconds, Fetched 1 row(s)
spark-sgls Create Database if not exists mydb
[» location 'fopt/sparkdb';

chgrp: changing ownership of 'file:///foptfsparkdb': chown:
Time taken: @.342 seconds

|[spark-=ql> show databases;

default

mydb

Time taken: @.841 seconds, Fetched 2 row(s)
spark-sql> I

2. Describe Database: We will be using the following command to describe a
database:

Describe Database [extended] mydb;

The output after execution will be similar to this:

[spark-sql> Describe Database mydb;

Database Name mydb

Description

Location file:/fopt/sparkdb

Time taken: @.BB? seconds, Fetched 3 row(s)
[spark-sqgl> Describe Database Extended mydb;
Database Name mydb

Description

Location file:fopt/sparkdb
Properties

Time taken: 8.863 seconds, Fetched 4 row(s)

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

[94]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:28.

Spark SQL Chapter 6

3. sHow DATABASES: We will be using the following command to display a
database:

SHOW DATABASES [LIKE 'pattern']
pattern could be any partial search string or *.
4. use mydb: The following command can be given to use a database:
use mydb;

5. DROP DATABASE: We will be using the following command to describe a
database:

DROP DATABASE [IF EXISTS] mydb [(RESTRICT|CASCADE)]

e CASCADE: This will delete all underlying tables from the database
e RESTRICT: This will raise an exception if we run it on a non-empty database

Table and view

In this section, we will be looking at some operations that we can perform on a table and
view:

1. Create table: We will be using the following command to create a table:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [mydb.]mytable
[(col_namel:col_typel)]
——[PARTITIONED BY (col_name2:col_type2)]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION path]
[TBLPROPERTIES (keyl=vall, key2=val2, ...)]
[AS select_statement]

Here's an example of creating a table with actual values:

CREATE TABLE mytable (id String, firstname String, address String,
city String, State String, zip String, ip String, product_id
String) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

LOCATION '/opt/data'

Stored as TEXTFILE;

[95]

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:28.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark SQL Chapter 6

You will see the following screen on execution of the previous command:

spark-sql> CREATE TABLE mytable (id String, firstname String,address String, city String, State String, zip String, ip String, product_id String)
> ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
> LOCATION '/opt/data'

[> Stored as TEXTFILE;

Time taken: 8.338 seconds

[spark-sql> select * from mytable limit 2;

id firstname lastname address city state zip ip

e Zena Ross 41228 West India Ln. Powell Tennessee 21558 192.168.56.127

Time taken: 2.969 seconds, Fetched 2 row(s)

spark-sql> I

Here are the parameters that need to be defined during table creation:

e Datasource: This is the file format with which this table is associated. It could be
CSV, JSON, TEXT, ORC, or Parquet.

¢ n: Specifies the number of buckets if you want to create bucketed table.

2. Create view: We will be using the following command to create a VIEW:

CREATE [OR REPLACE] VIEW mydb.myview
[(coll_name, col2_name)]
[TBLPROPERTIES (keyl=vall, ...)]
AS select

This will create a logical view on one or more tables. The view definition will only
store the corresponding query definition and, when the view is
used, the underlying query will be called at runtime.

3. Describe table: We will be using the following command to DESCRIBE a table:
DESCRIBE mydb.mytable

Extended: Describe Extended will give more detailed information
about the table definition.

[96]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:28.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark SQL Chapter 6

4. Alter table or view: There are various operations under ALTER that we can
perform. We will be taking a look at the following operations:

e RENAME: We will be using the following command to rename a table or
view:

ALTER TABLE |VIEW mydb.mytable RENAME TO mydb.mytablel

e SET PROPERTIES: The following command can be used to set
the properties of a table or view:

ALTER TABLE |VIEW mytable SET TBLPROPERTIES (keyl=vall,
key2=val2, ...)

¢ Drop properties: The following command can be used to drop
the properties of a table or view:

ALTER TABLE |VIEW mytable UNSET TBLPROPERTIES IF EXISTS
(keyl, key2, ...)

5. DrROP TABLE: We will be using the following command to drop a table:
DROP TABLE mydb.mytable

6. This show table properties: We will be using the following command to show the
properties of a particular table:

SHOW TBLPROPERTIES mydb.mytable [(prop_key)]
7. SHOW TABLES: The command that follows is used to show tables:
SHOW TABLES [LIKE 'pattern']

Shows all tables in the current database. Use pattern if you want to list only specific tables
based on a pattern.

8. TRUNACTE TABLE: We will be using the following command to truncate a
particular table:

TRUNCATE TABLE mytable

This will delete all rows from the specified table. It does not work on view or temporary
tables.

[97]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:28.

Spark SQL Chapter 6

9. sHow CREATE TABLE: The following command provides the create table
statement for mytable:

SHOW CREATE TABLE mydb.mytable

10. sHow coLuMNs: We will be using the following command to display the list of
columns in the specified table:

SHOW COLUMNS (FROM | IN) mydb.mytable
11. INSERT: We will be using the following command to insert values into a table:
INSERT INTO mydb.mytable select ... from mydb.mytablel

In the event that the table is divided, we must determine a particular partition of the table.
We can use the following command to INSERT into PARTITION of a table:

INSERT INTO mydb.mytable PARTITION (part_col_namel=vall) select ... from
mydb.mytablel

Load data

We are allowed to load data into Hive tables in three different ways. Two of the methods
are DML tasks of Hive. The third is utilizing HDFS order. These three methods are
explained as follows:

* Load data from local filesystem: We will be using the following command to
load data from a local filesystem:

LOAD DATA LOCAL INPATH 'local_path' INTO TABLE mydb.mytable

The following screenshot shows how we can load sample_10000.txt from the
local filesystem into a Spark table:

[epark—sql> LOAD DATA LOCAL INPATH 'fopt/data/sample_10088.txt' INTO TABLE mytable;
Time taken: B.4%91 seconds

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

[98]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt
Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.
Created from etown-ebooks on 2025-01-12 23:18:28.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark SQL Chapter 6

¢ Load data from HDFS: We will be using the following command to load data
from HDEFS:

LOAD DATA INPATH 'hdfs_path' INTO TABLE mydb.mytable

* Load data into a partition of a table: We can use the following command to load
data into a partition of a table:

LOAD DATA [LOCAL] INPATH 'path' INTO TABLE mydb.mytable PARTITION
(part_coll_name=vall)

Creating UDFs

Users can define User-Defined Functions (UDFs) for custom logic in Scala or Python. The
formats for UDF definition and registration are explained as follows:

e The syntax for registering a Spark SQL function as a UDF in Scala is given as
follows:

val squared = (s: Int) => { s * s }
spark.udf.register ("square", squared)

e The syntax for calling a Spark SQL function as a UDF in Scala is given as follows:
spark.range (1, 20).createOrReplaceTempView (("udf_test"))
%$sql select id, square(id) as id_squared from udf_test

e The syntax for registering a Spark SQL function as a UDF in Python is given as
follows:

def squared(s):
return s * s
spark.udf.register ("squaredWithPython", squared)

e The syntax for calling a Spark SQL function as a UDF in Python is given as
follows:

spark.range (1, 20).registerTempTable ("test")
%$sql select id, squaredWithPython(id) as id_squared from test

[99]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:28.

Copyright © 2019. Packt Publishing, Limited. All rights reserved.

Spark SQL Chapter 6

SQL database using JDBC

Spark SQL also enables users to query directly from different RDBMS data sources. The
results of the query are returned as a DataFrame that can be further queried with Spark
SQL or joined with other datasets.

To use a JDBC connection, you need to add the JDBC driver jars for the required database
in the Spark classpath.

For example, mysql can be connected with Spark SQL with the following commands:
import org.apache.spark.sql.SparkSession

object JDBCMySQL {

def main(args: Array[String]) {

//At first create a Spark Session as the entry point of your app
val spark:SparkSession = SparkSession

.builder ()

.appName ("JDBC-MYSQL")

.master ("local[*]")

.config("spark.sql.warehouse.dir", "C:/Spark")

.getOrCreate() ;

val dataframe_mysql = spark.read.format ("jdbc")
.option("url", "jdbc:mysql://localhost:3306/mydb") // mydb is database

name
.option("driver", "com.mysql.jdbc.Driver")
.option("dbtable", "mytable") //replace table name
.option("user", "root") //replace user name
.option ("password", "spark") // replace password
.load()

dataframe_mysql.show ()
}
}

Summary

In this chapter, we learned how we can connect Spark to the Hive metastore and use the
Spark SQL language to perform DDL operations in Spark. Also, we went through how we
can connect Spark SQL to different RDBMS datastores and query tables, which provide
DataFrames as results. In the next chapter, we will be studying Spark Streaming, machine
learning, and graph analysis.

[100]

Mehrotra, Shrey, and Akash Grade. Apache Spark Quick Start Guide : Quickly Learn the Art of Writing Efficient Big Data Applications with Apache Spark, Packt

Publishing, Limited, 2019. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/etown-ebooks/detail.action?docID=5675596.

Created from etown-ebooks on 2025-01-12 23:18:28.

