
Learning

 Spark
Lightning-Fast Data Analytics

Jules S. Damji,
Brooke Wenig,

Tathagata Das
 & Denny Lee

Foreword by Matei Zaharia

2nd Edition
Covers

Apache Spark 3.0

Compliments of

https://dbricks.co/2AuGvvA

Praise for Learning Spark, Second Edition

This book offers a structured approach to learning Apache Spark,
covering new developments in the project. It is a great way for Spark developers

to get started with big data.
—Reynold Xin, Databricks Chief Architect and

Cofounder and Apache Spark PMC Member

For data scientists and data engineers looking to learn Apache Spark and how to build
scalable and reliable big data applications, this book is an essential guide!

—Ben Lorica, Databricks Chief Data Scientist,
Past Program Chair O’Reilly Strata Conferences,

Program Chair for Spark + AI Summit

Jules S. Damji, Brooke Wenig,
Tathagata Das, and Denny Lee

Learning Spark
Lightning-Fast Data Analytics

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05004-9

[GP]

Learning Spark
by Jules S. Damji, Brooke Wenig, Tathagata Das, and Denny Lee

Copyright © 2020 Databricks, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Michele Cronin
Production Editor: Deborah Baker
Copyeditor: Rachel Head
Proofreader: Penelope Perkins

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January 2015: First Edition
July 2020: Second Edition

Revision History for the Second Edition
2020-06-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492050049 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Spark, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Databricks. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492050049
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xiii

Preface. xv

1. Introduction to Apache Spark: A Unified Analytics Engine. 1
The Genesis of Spark 1

Big Data and Distributed Computing at Google 1
Hadoop at Yahoo! 2
Spark’s Early Years at AMPLab 3

What Is Apache Spark? 4
Speed 4
Ease of Use 5
Modularity 5
Extensibility 5

Unified Analytics 6
Apache Spark Components as a Unified Stack 6
Apache Spark’s Distributed Execution 10

The Developer’s Experience 14
Who Uses Spark, and for What? 14
Community Adoption and Expansion 16

2. Downloading Apache Spark and Getting Started. 19
Step 1: Downloading Apache Spark 19

Spark’s Directories and Files 21
Step 2: Using the Scala or PySpark Shell 22

Using the Local Machine 23
Step 3: Understanding Spark Application Concepts 25

Spark Application and SparkSession 26

v

Spark Jobs 27
Spark Stages 28
Spark Tasks 28

Transformations, Actions, and Lazy Evaluation 28
Narrow and Wide Transformations 30

The Spark UI 31
Your First Standalone Application 34

Counting M&Ms for the Cookie Monster 35
Building Standalone Applications in Scala 40

Summary 42

3. Apache Spark’s Structured APIs. 43
Spark: What’s Underneath an RDD? 43
Structuring Spark 44

Key Merits and Benefits 45
The DataFrame API 47

Spark’s Basic Data Types 48
Spark’s Structured and Complex Data Types 49
Schemas and Creating DataFrames 50
Columns and Expressions 54
Rows 57
Common DataFrame Operations 58
End-to-End DataFrame Example 68

The Dataset API 69
Typed Objects, Untyped Objects, and Generic Rows 69
Creating Datasets 71
Dataset Operations 72
End-to-End Dataset Example 74

DataFrames Versus Datasets 74
When to Use RDDs 75

Spark SQL and the Underlying Engine 76
The Catalyst Optimizer 77

Summary 82

4. Spark SQL and DataFrames: Introduction to Built-in Data Sources. 83
Using Spark SQL in Spark Applications 84

Basic Query Examples 85
SQL Tables and Views 89

Managed Versus UnmanagedTables 89
Creating SQL Databases and Tables 90
Creating Views 91
Viewing the Metadata 93

vi | Table of Contents

Caching SQL Tables 93
Reading Tables into DataFrames 93

Data Sources for DataFrames and SQL Tables 94
DataFrameReader 94
DataFrameWriter 96
Parquet 97
JSON 100
CSV 102
Avro 104
ORC 106
Images 108
Binary Files 110

Summary 111

5. Spark SQL and DataFrames: Interacting with External Data Sources. 113
Spark SQL and Apache Hive 113

User-Defined Functions 114
Querying with the Spark SQL Shell, Beeline, and Tableau 119

Using the Spark SQL Shell 119
Working with Beeline 120
Working with Tableau 122

External Data Sources 129
JDBC and SQL Databases 129
PostgreSQL 132
MySQL 133
Azure Cosmos DB 134
MS SQL Server 136
Other External Sources 137

Higher-Order Functions in DataFrames and Spark SQL 138
Option 1: Explode and Collect 138
Option 2: User-Defined Function 138
Built-in Functions for Complex Data Types 139
Higher-Order Functions 141

Common DataFrames and Spark SQL Operations 144
Unions 147
Joins 148
Windowing 149
Modifications 151

Summary 155

6. Spark SQL and Datasets. 157
Single API for Java and Scala 157

Table of Contents | vii

Scala Case Classes and JavaBeans for Datasets 158
Working with Datasets 160

Creating Sample Data 160
Transforming Sample Data 162

Memory Management for Datasets and DataFrames 167
Dataset Encoders 168

Spark’s Internal Format Versus Java Object Format 168
Serialization and Deserialization (SerDe) 169

Costs of Using Datasets 170
Strategies to Mitigate Costs 170

Summary 172

7. Optimizing and Tuning Spark Applications. 173
Optimizing and Tuning Spark for Efficiency 173

Viewing and Setting Apache Spark Configurations 173
Scaling Spark for Large Workloads 177

Caching and Persistence of Data 183
DataFrame.cache() 183
DataFrame.persist() 184
When to Cache and Persist 187
When Not to Cache and Persist 187

A Family of Spark Joins 187
Broadcast Hash Join 188
Shuffle Sort Merge Join 189

Inspecting the Spark UI 197
Journey Through the Spark UI Tabs 197

Summary 205

8. Structured Streaming. 207
Evolution of the Apache Spark Stream Processing Engine 207

The Advent of Micro-Batch Stream Processing 208
Lessons Learned from Spark Streaming (DStreams) 209
The Philosophy of Structured Streaming 210

The Programming Model of Structured Streaming 211
The Fundamentals of a Structured Streaming Query 213

Five Steps to Define a Streaming Query 213
Under the Hood of an Active Streaming Query 219
Recovering from Failures with Exactly-Once Guarantees 221
Monitoring an Active Query 223

Streaming Data Sources and Sinks 226
Files 226
Apache Kafka 228

viii | Table of Contents

Custom Streaming Sources and Sinks 230
Data Transformations 234

Incremental Execution and Streaming State 234
Stateless Transformations 235
Stateful Transformations 235

Stateful Streaming Aggregations 238
Aggregations Not Based on Time 238
Aggregations with Event-Time Windows 239

Streaming Joins 246
Stream–Static Joins 246
Stream–Stream Joins 248

Arbitrary Stateful Computations 253
Modeling Arbitrary Stateful Operations with mapGroupsWithState() 254
Using Timeouts to Manage Inactive Groups 257
Generalization with flatMapGroupsWithState() 261

Performance Tuning 262
Summary 264

9. Building Reliable Data Lakes with Apache Spark. 265
The Importance of an Optimal Storage Solution 265
Databases 266

A Brief Introduction to Databases 266
Reading from and Writing to Databases Using Apache Spark 267
Limitations of Databases 267

Data Lakes 268
A Brief Introduction to Data Lakes 268
Reading from and Writing to Data Lakes using Apache Spark 269
Limitations of Data Lakes 270

Lakehouses: The Next Step in the Evolution of Storage Solutions 271
Apache Hudi 272
Apache Iceberg 272
Delta Lake 273

Building Lakehouses with Apache Spark and Delta Lake 274
Configuring Apache Spark with Delta Lake 274
Loading Data into a Delta Lake Table 275
Loading Data Streams into a Delta Lake Table 277
Enforcing Schema on Write to Prevent Data Corruption 278
Evolving Schemas to Accommodate Changing Data 279
Transforming Existing Data 279
Auditing Data Changes with Operation History 282
Querying Previous Snapshots of a Table with Time Travel 283

Summary 284

Table of Contents | ix

10. Machine Learning with MLlib. 285
What Is Machine Learning? 286

Supervised Learning 286
Unsupervised Learning 288
Why Spark for Machine Learning? 289

Designing Machine Learning Pipelines 289
Data Ingestion and Exploration 290
Creating Training and Test Data Sets 291
Preparing Features with Transformers 293
Understanding Linear Regression 294
Using Estimators to Build Models 295
Creating a Pipeline 296
Evaluating Models 302
Saving and Loading Models 306

Hyperparameter Tuning 307
Tree-Based Models 307
k-Fold Cross-Validation 316
Optimizing Pipelines 320

Summary 321

11. Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark. . 323
Model Management 323

MLflow 324
Model Deployment Options with MLlib 330

Batch 332
Streaming 333
Model Export Patterns for Real-Time Inference 334

Leveraging Spark for Non-MLlib Models 336
Pandas UDFs 336
Spark for Distributed Hyperparameter Tuning 337

Summary 341

12. Epilogue: Apache Spark 3.0. 343
Spark Core and Spark SQL 343

Dynamic Partition Pruning 343
Adaptive Query Execution 345
SQL Join Hints 348
Catalog Plugin API and DataSourceV2 349
Accelerator-Aware Scheduler 351

Structured Streaming 352
PySpark, Pandas UDFs, and Pandas Function APIs 354

Redesigned Pandas UDFs with Python Type Hints 354

x | Table of Contents

Iterator Support in Pandas UDFs 355
New Pandas Function APIs 356

Changed Functionality 357
Languages Supported and Deprecated 357
Changes to the DataFrame and Dataset APIs 357
DataFrame and SQL Explain Commands 358

Summary 360

Index. 361

Table of Contents | xi

Foreword

Apache Spark has evolved significantly since I first started the project at UC Berkeley
in 2009. After moving to the Apache Software Foundation, the open source project
has had over 1,400 contributors from hundreds of companies, and the global Spark
meetup group has grown to over half a million members. Spark’s user base has also
become highly diverse, encompassing Python, R, SQL, and JVM developers, with use
cases ranging from data science to business intelligence to data engineering. I have
been working closely with the Apache Spark community to help continue its develop‐
ment, and I am thrilled to see the progress thus far.

The release of Spark 3.0 marks an important milestone for the project and has
sparked the need for updated learning material. The idea of a second edition of
Learning Spark has come up many times—and it was overdue. Even though I coau‐
thored both Learning Spark and Spark: The Definitive Guide (both O’Reilly), it was
time for me to let the next generation of Spark contributors pick up the narrative. I’m
delighted that four experienced practitioners and developers, who have been working
closely with Apache Spark from its early days, have teamed up to write this second
edition of the book, incorporating the most recent APIs and best practices for Spark
developers in a clear and informative guide.

The authors’ approach to this edition is highly conducive to hands-on learning. The
key concepts in Spark and distributed big data processing have been distilled into
easy-to-follow chapters. Through the book’s illustrative code examples, developers
can build confidence using Spark and gain a greater understanding of its Structured
APIs and how to leverage them. I hope that this second edition of Learning Spark will
guide you on your large-scale data processing journey, whatever problems you wish
to tackle using Spark.

— Matei Zaharia, Chief Technologist,
Cofounder of Databricks, Asst. Professor at Stanford,

and original creator of Apache Spark

xiii

https://oreil.ly/SB8S-
https://oreil.ly/SB8S-
http://shop.oreilly.com/product/0636920028512.do
http://shop.oreilly.com/product/0636920034957.do

Preface

We welcome you to the second edition of Learning Spark. It’s been five years since the
first edition was published in 2015, originally authored by Holden Karau, Andy Kon‐
winski, Patrick Wendell, and Matei Zaharia. This new edition has been updated to
reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its
expanded ecosystem of built-in and external data sources, machine learning, and
streaming technologies with which Spark is tightly integrated.

Over the years since its first 1.x release, Spark has become the de facto big data uni‐
fied processing engine. Along the way, it has extended its scope to include support for
various analytic workloads. Our intent is to capture and curate this evolution for
readers, showing not only how you can use Spark but how it fits into the new era of
big data and machine learning. Hence, we have designed each chapter to build pro‐
gressively on the foundations laid by the previous chapters, ensuring that the content
is suited for our intended audience.

Who This Book Is For
Most developers who grapple with big data are data engineers, data scientists, or
machine learning engineers. This book is aimed at those professionals who are look‐
ing to use Spark to scale their applications to handle massive amounts of data.

In particular, data engineers will learn how to use Spark’s Structured APIs to perform
complex data exploration and analysis on both batch and streaming data; use Spark
SQL for interactive queries; use Spark’s built-in and external data sources to read,
refine, and write data in different file formats as part of their extract, transform, and
load (ETL) tasks; and build reliable data lakes with Spark and the open source Delta
Lake table format.

For data scientists and machine learning engineers, Spark’s MLlib library offers many
common algorithms to build distributed machine learning models. We will cover
how to build pipelines with MLlib, best practices for distributed machine learning,

xv

how to use Spark to scale single-node models, and how to manage and deploy these
models using the open source library MLflow.

While the book is focused on learning Spark as an analytical engine for diverse work‐
loads, we will not cover all of the languages that Spark supports. Most of the examples
in the chapters are written in Scala, Python, and SQL. Where necessary, we have
infused a bit of Java. For those interested in learning Spark with R, we recommend
Javier Luraschi, Kevin Kuo, and Edgar Ruiz’s Mastering Spark with R (O’Reilly).

Finally, because Spark is a distributed engine, building an understanding of Spark
application concepts is critical. We will guide you through how your Spark applica‐
tion interacts with Spark’s distributed components and how execution is decomposed
into parallel tasks on a cluster. We will also cover which deployment modes are sup‐
ported and in what environments.

While there are many topics we have chosen to cover, there are a few that we have
opted to not focus on. These include the older low-level Resilient Distributed Dataset
(RDD) APIs and GraphX, Spark’s API for graphs and graph-parallel computation.
Nor have we covered advanced topics such as how to extend Spark’s Catalyst opti‐
mizer to implement your own operations, how to implement your own catalog, or
how to write your own DataSource V2 data sinks and sources. Though part of Spark,
these are beyond the scope of your first book on learning Spark.

Instead, we have focused and organized the book around Spark’s Structured APIs,
across all its components, and how you can use Spark to process structured data at
scale to perform your data engineering or data science tasks.

How the Book Is Organized
We organized the book in a way that leads you from chapter to chapter by introduc‐
ing concepts, demonstrating these concepts via example code snippets, and providing
full code examples or notebooks in the book’s GitHub repo.

Chapter 1, Introduction to Apache Spark: A Unified Analytics Engine
Introduces you to the evolution of big data and provides a high-level overview of
Apache Spark and its application to big data.

Chapter 2, Downloading Apache Spark and Getting Started
Walks you through downloading and setting up Apache Spark on your local
machine.

Chapter 3, Apache Spark’s Structured APIs through Chapter 6, Spark SQL and Datasets
These chapters focus on using the DataFrame and Dataset Structured APIs to
ingest data from built-in and external data sources, apply built-in and custom
functions, and utilize Spark SQL. These chapters comprise the foundation for
later chapters, incorporating all the latest Spark 3.0 changes where appropriate.

xvi | Preface

http://shop.oreilly.com/product/0636920223764.do
https://github.com/databricks/LearningSparkV2

Chapter 7, Optimizing and Tuning Spark Applications
Provides you with best practices for tuning, optimizing, debugging, and inspect‐
ing your Spark applications through the Spark UI, as well as details on the con‐
figurations you can tune to increase performance.

Chapter 8, Structured Streaming
Guides you through the evolution of the Spark Streaming engine and the Struc‐
tured Streaming programming model. It examines the anatomy of a typical
streaming query and discusses the different ways to transform streaming data—
stateful aggregations, stream joins, and arbitrary stateful aggregation—while pro‐
viding guidance on how to design performant streaming queries.

Chapter 9, Building Reliable Data Lakes with Apache Spark
Surveys three open source table format storage solutions, as part of the Spark
ecosystem, that employ Apache Spark to build reliable data lakes with transac‐
tional guarantees. Due to Delta Lake’s tight integration with Spark for both batch
and streaming workloads, we focus on that solution and explore how it facilitates
a new paradigm in data management, the lakehouse.

Chapter 10, Machine Learning with MLlib
Introduces MLlib, the distributed machine learning library for Spark, and walks
you through an end-to-end example of how to build a machine learning pipeline,
including topics such as feature engineering, hyperparameter tuning, evaluation
metrics, and saving and loading models.

Chapter 11, Managing, Deploying, and Scaling Machine Learning Pipelines with Apache
Spark

Covers how to track and manage your MLlib models with MLflow, compares and
contrasts different model deployment options, and explores how to leverage
Spark for non-MLlib models for distributed model inference, feature engineer‐
ing, and/or hyperparameter tuning.

Chapter 12, Epilogue: Apache Spark 3.0
The epilogue highlights notable features and changes in Spark 3.0. While the full
range of enhancements and features is too extensive to fit in a single chapter, we
highlight the major changes you should be aware of and recommend you check
the release notes when Spark 3.0 is officially released.

Throughout these chapters, we have incorporated or noted Spark 3.0 features where
needed and tested all the code examples and notebooks against Spark 3.0.0-preview2.

Preface | xvii

How to Use the Code Examples
The code examples in the book range from brief snippets to complete Spark applica‐
tions and end-to-end notebooks, in Scala, Python, SQL, and, where necessary, Java.

While some short code snippets in a chapter are self-contained and can be copied and
pasted to run in a Spark shell (pyspark or spark-shell), others are fragments from
standalone Spark applications or end-to-end notebooks. To run standalone Spark
applications in Scala, Python, or Java, read the instructions in the respective chapter’s
README files in this book’s GitHub repo.

As for the notebooks, to run these you will need to register for a free Databricks
Community Edition account. We detail how to import the notebooks and create a
cluster using Spark 3.0 in the README.

Software and Configuration Used
Most of the code in this book and the accompanying notebooks were written in and
tested against Apache Spark 3.0.0-preview2, which was available to us at the time we
were writing the final chapters.

By the time this book is published, Apache Spark 3.0 will have been released and be
available to the community for general use. We recommend that you download and
use the official release with the following configurations for your operating system:

• Apache Spark 3.0 (prebuilt for Apache Hadoop 2.7)
• Java Development Kit (JDK) 1.8.0

If you intend to use only Python, then you can simply run pip install pyspark.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xviii | Preface

https://github.com/databricks/LearningSparkV2
https://community.cloud.databricks.com/
https://community.cloud.databricks.com/
https://github.com/databricks/LearningSparkV2/tree/master/notebooks
https://oreil.ly/WFX48

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Learning Spark, 2nd
Edition, by Jules S. Damji, Brooke Wenig, Tathagata Das, and Denny Lee. Copyright
2020 Databricks, Inc., 978-1-492-05004-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xix

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Visit our web page for this book, where we list errata, examples, and any additional
information, at https://oreil.ly/LearningSpark2.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This project was truly a team effort involving many people, and without their support
and feedback we would not have been able to finish this book, especially in today’s
unprecedented COVID-19 times.

First and foremost, we want to thank our employer, Databricks, for supporting us and
allocating us dedicated time as part of our jobs to finish this book. In particular, we
want to thank Matei Zaharia, Reynold Xin, Ali Ghodsi, Ryan Boyd, and Rick Schultz
for encouraging us to write the second edition.

Second, we would like to thank our technical reviewers: Adam Breindel, Amir Issaei,
Jacek Laskowski, Sean Owen, and Vishwanath Subramanian. Their diligent and con‐
structive feedback, informed by their technical expertise in the community and
industry point of view, made this book what it is: a valuable resource to learn Spark.

Besides the formal book reviewers, we received invaluable feedback from others
knowledgeable about specific topics and sections of the chapters, and we want to
acknowledge their contributions. Many thanks to: Conor Murphy, Hyukjin Kwon,
Maryann Xue, Niall Turbitt, Wenchen Fan, Xiao Li, and Yuanjian Li.

xx | Preface

https://oreil.ly/LearningSpark2
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Finally, we would like to thank our colleagues at Databricks (for their tolerance of us
missing or neglecting project deadlines), our families and loved ones (for their
patience and empathy as we wrote in the early light of day or late into the night on
weekdays and weekends), and the entire open source Spark community. Without
their continued contributions, Spark would not be where it is today—and we authors
would not have had much to write about.

Thank you all!

Preface | xxi

CHAPTER 1

Introduction to Apache Spark:
A Unified Analytics Engine

This chapter lays out the origins of Apache Spark and its underlying philosophy. It
also surveys the main components of the project and its distributed architecture. If
you are familiar with Spark’s history and the high-level concepts, you can skip this
chapter.

The Genesis of Spark
In this section, we’ll chart the course of Apache Spark’s short evolution: its genesis,
inspiration, and adoption in the community as a de facto big data unified processing
engine.

Big Data and Distributed Computing at Google
When we think of scale, we can’t help but think of the ability of Google’s search
engine to index and search the world’s data on the internet at lightning speed. The
name Google is synonymous with scale. In fact, Google is a deliberate misspelling of
the mathematical term googol: that’s 1 plus 100 zeros!

Neither traditional storage systems such as relational database management systems
(RDBMSs) nor imperative ways of programming were able to handle the scale at
which Google wanted to build and search the internet’s indexed documents. The
resulting need for new approaches led to the creation of the Google File System (GFS),
MapReduce (MR), and Bigtable.

While GFS provided a fault-tolerant and distributed filesystem across many com‐
modity hardware servers in a cluster farm, Bigtable offered scalable storage of
structured data across GFS. MR introduced a new parallel programming paradigm,

1

https://oreil.ly/-6H9D
https://oreil.ly/08zaO
https://oreil.ly/KfS8C

based on functional programming, for large-scale processing of data distributed over
GFS and Bigtable.

In essence, your MR applications interact with the MapReduce system that sends
computation code (map and reduce functions) to where the data resides, favoring
data locality and cluster rack affinity rather than bringing data to your application.

The workers in the cluster aggregate and reduce the intermediate computations and
produce a final appended output from the reduce function, which is then written to a
distributed storage where it is accessible to your application. This approach signifi‐
cantly reduces network traffic and keeps most of the input/output (I/O) local to disk
rather than distributing it over the network.

Most of the work Google did was proprietary, but the ideas expressed in the afore‐
mentioned three papers spurred innovative ideas elsewhere in the open source com‐
munity—especially at Yahoo!, which was dealing with similar big data challenges of
scale for its search engine.

Hadoop at Yahoo!
The computational challenges and solutions expressed in Google’s GFS paper pro‐
vided a blueprint for the Hadoop File System (HDFS), including the MapReduce
implementation as a framework for distributed computing. Donated to the Apache
Software Foundation (ASF), a vendor-neutral non-profit organization, in April 2006,
it became part of the Apache Hadoop framework of related modules: Hadoop Com‐
mon, MapReduce, HDFS, and Apache Hadoop YARN.

Although Apache Hadoop had garnered widespread adoption outside Yahoo!, inspir‐
ing a large open source community of contributors and two open source–based com‐
mercial companies (Cloudera and Hortonworks, now merged), the MapReduce
framework on HDFS had a few shortcomings.

First, it was hard to manage and administer, with cumbersome operational complex‐
ity. Second, its general batch-processing MapReduce API was verbose and required a
lot of boilerplate setup code, with brittle fault tolerance. Third, with large batches of
data jobs with many pairs of MR tasks, each pair’s intermediate computed result is
written to the local disk for the subsequent stage of its operation (see Figure 1-1).
This repeated performance of disk I/O took its toll: large MR jobs could run for hours
on end, or even days.

2 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/T0f8r
https://oreil.ly/HokID
https://oreil.ly/JfsBd
https://www.apache.org/
https://www.apache.org/
https://oreil.ly/twL6R

Figure 1-1. Intermittent iteration of reads and writes between map and reduce
computations

And finally, even though Hadoop MR was conducive to large-scale jobs for general
batch processing, it fell short for combining other workloads such as machine learn‐
ing, streaming, or interactive SQL-like queries.

To handle these new workloads, engineers developed bespoke systems (Apache Hive,
Apache Storm, Apache Impala, Apache Giraph, Apache Drill, Apache Mahout, etc.),
each with their own APIs and cluster configurations, further adding to the opera‐
tional complexity of Hadoop and the steep learning curve for developers.

The question then became (bearing in mind Alan Kay’s adage, “Simple things should
be simple, complex things should be possible”), was there a way to make Hadoop and
MR simpler and faster?

Spark’s Early Years at AMPLab
Researchers at UC Berkeley who had previously worked on Hadoop MapReduce took
on this challenge with a project they called Spark. They acknowledged that MR was
inefficient (or intractable) for interactive or iterative computing jobs and a complex
framework to learn, so from the onset they embraced the idea of making Spark sim‐
pler, faster, and easier. This endeavor started in 2009 at the RAD Lab, which later
became the AMPLab (and now is known as the RISELab).

Early papers published on Spark demonstrated that it was 10 to 20 times faster than
Hadoop MapReduce for certain jobs. Today, it’s many orders of magnitude faster. The
central thrust of the Spark project was to bring in ideas borrowed from Hadoop Map‐
Reduce, but to enhance the system: make it highly fault tolerant and embarrassingly
parallel, support in-memory storage for intermediate results between iterative and
interactive map and reduce computations, offer easy and composable APIs in multi‐
ple languages as a programming model, and support other workloads in a unified
manner. We’ll come back to this idea of unification shortly, as it’s an important theme
in Spark.

By 2013 Spark had gained widespread use, and some of its original creators and
researchers—Matei Zaharia, Ali Ghodsi, Reynold Xin, Patrick Wendell, Ion Stoica,
and Andy Konwinski—donated the Spark project to the ASF and formed a company
called Databricks.

The Genesis of Spark | 3

https://oreil.ly/RFY2w
https://spark.apache.org

Databricks and the community of open source developers worked to release Apache
Spark 1.0 in May 2014, under the governance of the ASF. This first major release
established the momentum for frequent future releases and contributions of notable
features to Apache Spark from Databricks and over 100 commercial vendors.

What Is Apache Spark?
Apache Spark is a unified engine designed for large-scale distributed data processing,
on premises in data centers or in the cloud.

Spark provides in-memory storage for intermediate computations, making it much
faster than Hadoop MapReduce. It incorporates libraries with composable APIs for
machine learning (MLlib), SQL for interactive queries (Spark SQL), stream process‐
ing (Structured Streaming) for interacting with real-time data, and graph processing
(GraphX).

Spark’s design philosophy centers around four key characteristics:

• Speed
• Ease of use
• Modularity
• Extensibility

Let’s take a look at what this means for the framework.

Speed
Spark has pursued the goal of speed in several ways. First, its internal implementation
benefits immensely from the hardware industry’s recent huge strides in improving
the price and performance of CPUs and memory. Today’s commodity servers come
cheap, with hundreds of gigabytes of memory, multiple cores, and the underlying
Unix-based operating system taking advantage of efficient multithreading and paral‐
lel processing. The framework is optimized to take advantage of all of these factors.

Second, Spark builds its query computations as a directed acyclic graph (DAG); its
DAG scheduler and query optimizer construct an efficient computational graph that
can usually be decomposed into tasks that are executed in parallel across workers on
the cluster. And third, its physical execution engine, Tungsten, uses whole-stage code
generation to generate compact code for execution (we will cover SQL optimization
and whole-stage code generation in Chapter 3).

With all the intermediate results retained in memory and its limited disk I/O, this
gives it a huge performance boost.

4 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/Pq11v
https://oreil.ly/Pq11v
https://spark.apache.org

Ease of Use
Spark achieves simplicity by providing a fundamental abstraction of a simple logical
data structure called a Resilient Distributed Dataset (RDD) upon which all other
higher-level structured data abstractions, such as DataFrames and Datasets, are con‐
structed. By providing a set of transformations and actions as operations, Spark offers
a simple programming model that you can use to build big data applications in famil‐
iar languages.

Modularity
Spark operations can be applied across many types of workloads and expressed in any
of the supported programming languages: Scala, Java, Python, SQL, and R. Spark
offers unified libraries with well-documented APIs that include the following mod‐
ules as core components: Spark SQL, Spark Structured Streaming, Spark MLlib, and
GraphX, combining all the workloads running under one engine. We’ll take a closer
look at all of these in the next section.

You can write a single Spark application that can do it all—no need for distinct
engines for disparate workloads, no need to learn separate APIs. With Spark, you get
a unified processing engine for your workloads.

Extensibility
Spark focuses on its fast, parallel computation engine rather than on storage. Unlike
Apache Hadoop, which included both storage and compute, Spark decouples the two.
That means you can use Spark to read data stored in myriad sources—Apache
Hadoop, Apache Cassandra, Apache HBase, MongoDB, Apache Hive, RDBMSs, and
more—and process it all in memory. Spark’s DataFrameReaders and DataFrame
Writers can also be extended to read data from other sources, such as Apache Kafka,
Kinesis, Azure Storage, and Amazon S3, into its logical data abstraction, on which it
can operate.

The community of Spark developers maintains a list of third-party Spark packages as
part of the growing ecosystem (see Figure 1-2). This rich ecosystem of packages
includes Spark connectors for a variety of external data sources, performance moni‐
tors, and more.

What Is Apache Spark? | 5

https://oreil.ly/2tIVP

Figure 1-2. Apache Spark’s ecosystem of connectors

Unified Analytics
While the notion of unification is not unique to Spark, it is a core component of its
design philosophy and evolution. In November 2016, the Association for Computing
Machinery (ACM) recognized Apache Spark and conferred upon its original creators
the prestigious ACM Award for their paper describing Apache Spark as a “Unified
Engine for Big Data Processing.” The award-winning paper notes that Spark replaces
all the separate batch processing, graph, stream, and query engines like Storm,
Impala, Dremel, Pregel, etc. with a unified stack of components that addresses diverse
workloads under a single distributed fast engine.

Apache Spark Components as a Unified Stack
As shown in Figure 1-3, Spark offers four distinct components as libraries for diverse
workloads: Spark SQL, Spark MLlib, Spark Structured Streaming, and GraphX. Each
of these components is separate from Spark’s core fault-tolerant engine, in that you
use APIs to write your Spark application and Spark converts this into a DAG that is
executed by the core engine. So whether you write your Spark code using the pro‐
vided Structured APIs (which we will cover in Chapter 3) in Java, R, Scala, SQL, or

6 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/eak-T

Python, the underlying code is decomposed into highly compact bytecode that is exe‐
cuted in the workers’ JVMs across the cluster.

Figure 1-3. Apache Spark components and API stack

Let’s look at each of these components in more detail.

Spark SQL
This module works well with structured data. You can read data stored in an RDBMS
table or from file formats with structured data (CSV, text, JSON, Avro, ORC, Parquet,
etc.) and then construct permanent or temporary tables in Spark. Also, when using
Spark’s Structured APIs in Java, Python, Scala, or R, you can combine SQL-like quer‐
ies to query the data just read into a Spark DataFrame. To date, Spark SQL is ANSI
SQL:2003-compliant and it also functions as a pure SQL engine.

For example, in this Scala code snippet, you can read from a JSON file stored on
Amazon S3, create a temporary table, and issue a SQL-like query on the results read
into memory as a Spark DataFrame:

// In Scala
// Read data off Amazon S3 bucket into a Spark DataFrame
spark.read.json("s3://apache_spark/data/committers.json")
 .createOrReplaceTempView("committers")
// Issue a SQL query and return the result as a Spark DataFrame
val results = spark.sql("""SELECT name, org, module, release, num_commits
 FROM committers WHERE module = 'mllib' AND num_commits > 10
 ORDER BY num_commits DESC""")

You can write similar code snippets in Python, R, or Java, and the generated bytecode
will be identical, resulting in the same performance.

Spark MLlib
Spark comes with a library containing common machine learning (ML) algorithms
called MLlib. Since Spark’s first release, the performance of this library component
has improved significantly because of Spark 2.x’s underlying engine enhancements.

Unified Analytics | 7

https://oreil.ly/pJq1C
https://oreil.ly/pJq1C

MLlib provides many popular machine learning algorithms built atop high-level
DataFrame-based APIs to build models.

Starting with Apache Spark 1.6, the MLlib project is split between
two packages: spark.mllib and spark.ml. The DataFrame-based
API is the latter while the former contains the RDD-based APIs,
which are now in maintenance mode. All new features go into
spark.ml. This book refers to “MLlib” as the umbrella library for
machine learning in Apache Spark.

These APIs allow you to extract or transform features, build pipelines (for training
and evaluating), and persist models (for saving and reloading them) during deploy‐
ment. Additional utilities include the use of common linear algebra operations and
statistics. MLlib includes other low-level ML primitives, including a generic gradient
descent optimization. The following Python code snippet encapsulates the basic oper‐
ations a data scientist may do when building a model (more extensive examples will
be discussed in Chapters 10 and 11):

In Python
from pyspark.ml.classification import LogisticRegression
...
training = spark.read.csv("s3://...")
test = spark.read.csv("s3://...")

Load training data
lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

Fit the model
lrModel = lr.fit(training)

Predict
lrModel.transform(test)
...

Spark Structured Streaming
Apache Spark 2.0 introduced an experimental Continuous Streaming model and
Structured Streaming APIs, built atop the Spark SQL engine and DataFrame-based
APIs. By Spark 2.2, Structured Streaming was generally available, meaning that devel‐
opers could use it in their production environments.

Necessary for big data developers to combine and react in real time to both static data
and streaming data from engines like Apache Kafka and other streaming sources, the
new model views a stream as a continually growing table, with new rows of data
appended at the end. Developers can merely treat this as a structured table and issue
queries against it as they would a static table.

8 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/cyc1c
https://oreil.ly/YJSEq
https://oreil.ly/NYYsJ

1 Contributed to the community by Databricks as an open source project, GraphFrames is a general graph pro‐
cessing library that is similar to Apache Spark’s GraphX but uses DataFrame-based APIs.

Underneath the Structured Streaming model, the Spark SQL core engine handles all
aspects of fault tolerance and late-data semantics, allowing developers to focus on
writing streaming applications with relative ease. This new model obviated the old
DStreams model in Spark’s 1.x series, which we will discuss in more detail in Chap‐
ter 8. Furthermore, Spark 2.x and Spark 3.0 extended the range of streaming data
sources to include Apache Kafka, Kinesis, and HDFS-based or cloud storage.

The following code snippet shows the typical anatomy of a Structured Streaming
application. It reads from a localhost socket and writes the word count results to an
Apache Kafka topic:

In Python
Read a stream from a local host
from pyspark.sql.functions import explode, split
lines = (spark
 .readStream
 .format("socket")
 .option("host", "localhost")
 .option("port", 9999)
 .load())

Perform transformation
Split the lines into words
words = lines.select(explode(split(lines.value, " ")).alias("word"))

Generate running word count
word_counts = words.groupBy("word").count()

Write out to the stream to Kafka
query = (word_counts
 .writeStream
 .format("kafka")
 .option("topic", "output"))

GraphX
As the name suggests, GraphX is a library for manipulating graphs (e.g., social net‐
work graphs, routes and connection points, or network topology graphs) and per‐
forming graph-parallel computations. It offers the standard graph algorithms for
analysis, connections, and traversals, contributed by users in the community: the
available algorithms include PageRank, Connected Components, and Triangle
Counting.1

This code snippet shows a simple example of how to join two graphs using the
GraphX APIs:

Unified Analytics | 9

https://oreil.ly/_JGxi

// In Scala
val graph = Graph(vertices, edges)
messages = spark.textFile("hdfs://...")
val graph2 = graph.joinVertices(messages) {
 (id, vertex, msg) => ...
}

Apache Spark’s Distributed Execution
If you have read this far, you already know that Spark is a distributed data processing
engine with its components working collaboratively on a cluster of machines. Before
we explore programming with Spark in the following chapters of this book, you need
to understand how all the components of Spark’s distributed architecture work
together and communicate, and what deployment modes are available.

Let’s start by looking at each of the individual components shown in Figure 1-4 and
how they fit into the architecture. At a high level in the Spark architecture, a Spark
application consists of a driver program that is responsible for orchestrating parallel
operations on the Spark cluster. The driver accesses the distributed components in
the cluster—the Spark executors and cluster manager—through a SparkSession.

Figure 1-4. Apache Spark components and architecture

Spark driver

As the part of the Spark application responsible for instantiating a SparkSession, the
Spark driver has multiple roles: it communicates with the cluster manager; it requests
resources (CPU, memory, etc.) from the cluster manager for Spark’s executors
(JVMs); and it transforms all the Spark operations into DAG computations, schedules

10 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

them, and distributes their execution as tasks across the Spark executors. Once the
resources are allocated, it communicates directly with the executors.

SparkSession

In Spark 2.0, the SparkSession became a unified conduit to all Spark operations and
data. Not only did it subsume previous entry points to Spark like the SparkContext,
SQLContext, HiveContext, SparkConf, and StreamingContext, but it also made
working with Spark simpler and easier.

Although in Spark 2.x the SparkSession subsumes all other con‐
texts, you can still access the individual contexts and their respec‐
tive methods. In this way, the community maintained backward
compatibility. That is, your old 1.x code with SparkContext or
SQLContext will still work.

Through this one conduit, you can create JVM runtime parameters, define Data‐
Frames and Datasets, read from data sources, access catalog metadata, and issue
Spark SQL queries. SparkSession provides a single unified entry point to all of
Spark’s functionality.

In a standalone Spark application, you can create a SparkSession using one of the
high-level APIs in the programming language of your choice. In the Spark shell
(more on this in the next chapter) the SparkSession is created for you, and you can
access it via a global variable called spark or sc.

Whereas in Spark 1.x you would have had to create individual contexts (for stream‐
ing, SQL, etc.), introducing extra boilerplate code, in a Spark 2.x application you can
create a SparkSession per JVM and use it to perform a number of Spark operations.

Let’s take a look at an example:

// In Scala
import org.apache.spark.sql.SparkSession

// Build SparkSession
val spark = SparkSession
 .builder
 .appName("LearnSpark")
 .config("spark.sql.shuffle.partitions", 6)
 .getOrCreate()
...
// Use the session to read JSON
val people = spark.read.json("...")
...
// Use the session to issue a SQL query
val resultsDF = spark.sql("SELECT city, pop, state, zip FROM table_name")

Unified Analytics | 11

https://oreil.ly/Ap0Pq

Cluster manager
The cluster manager is responsible for managing and allocating resources for the
cluster of nodes on which your Spark application runs. Currently, Spark supports
four cluster managers: the built-in standalone cluster manager, Apache Hadoop
YARN, Apache Mesos, and Kubernetes.

Spark executor
A Spark executor runs on each worker node in the cluster. The executors communi‐
cate with the driver program and are responsible for executing tasks on the workers.
In most deployments modes, only a single executor runs per node.

Deployment modes
An attractive feature of Spark is its support for myriad deployment modes, enabling
Spark to run in different configurations and environments. Because the cluster man‐
ager is agnostic to where it runs (as long as it can manage Spark’s executors and
fulfill resource requests), Spark can be deployed in some of the most popular envi‐
ronments—such as Apache Hadoop YARN and Kubernetes—and can operate in dif‐
ferent modes. Table 1-1 summarizes the available deployment modes.

Table 1-1. Cheat sheet for Spark deployment modes

Mode Spark driver Spark executor Cluster manager
Local Runs on a single JVM, like a

laptop or single node
Runs on the same JVM as the
driver

Runs on the same host

Standalone Can run on any node in the
cluster

Each node in the cluster will
launch its own executor JVM

Can be allocated arbitrarily to any
host in the cluster

YARN (client) Runs on a client, not part of the
cluster

YARN’s NodeManager’s container YARN’s Resource Manager works
with YARN’s Application Master to
allocate the containers on
NodeManagers for executors

YARN
(cluster)

Runs with the YARN Application
Master

Same as YARN client mode Same as YARN client mode

Kubernetes Runs in a Kubernetes pod Each worker runs within its own
pod

Kubernetes Master

Distributed data and partitions
Actual physical data is distributed across storage as partitions residing in either HDFS
or cloud storage (see Figure 1-5). While the data is distributed as partitions across the
physical cluster, Spark treats each partition as a high-level logical data abstraction—as
a DataFrame in memory. Though this is not always possible, each Spark executor is
preferably allocated a task that requires it to read the partition closest to it in the net‐
work, observing data locality.

12 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

Figure 1-5. Data is distributed across physical machines

Partitioning allows for efficient parallelism. A distributed scheme of breaking up data
into chunks or partitions allows Spark executors to process only data that is close to
them, minimizing network bandwidth. That is, each executor’s core is assigned its
own data partition to work on (see Figure 1-6).

Figure 1-6. Each executor’s core gets a partition of data to work on

For example, this code snippet will break up the physical data stored across clusters
into eight partitions, and each executor will get one or more partitions to read into its
memory:

In Python
log_df = spark.read.text("path_to_large_text_file").repartition(8)
print(log_df.rdd.getNumPartitions())

And this code will create a DataFrame of 10,000 integers distributed over eight parti‐
tions in memory:

Unified Analytics | 13

In Python
df = spark.range(0, 10000, 1, 8)
print(df.rdd.getNumPartitions())

Both code snippets will print out 8.

In Chapters 3 and 7, we will discuss how to tune and change partitioning configura‐
tion for maximum parallelism based on how many cores you have on your executors.

The Developer’s Experience
Of all the developers’ delights, none is more attractive than a set of composable APIs
that increase productivity and are easy to use, intuitive, and expressive. One of
Apache Spark’s principal appeals to developers has been its easy-to-use APIs for oper‐
ating on small to large data sets, across languages: Scala, Java, Python, SQL, and R.

One primary motivation behind Spark 2.x was to unify and simplify the framework
by limiting the number of concepts that developers have to grapple with. Spark 2.x
introduced higher-level abstraction APIs as domain-specific language constructs,
which made programming Spark highly expressive and a pleasant developer experi‐
ence. You express what you want the task or operation to compute, not how to com‐
pute it, and let Spark ascertain how best to do it for you. We will cover these
Structured APIs in Chapter 3, but first let’s take a look at who the Spark developers
are.

Who Uses Spark, and for What?
Not surprisingly, most developers who grapple with big data are data engineers, data
scientists, or machine learning engineers. They are drawn to Spark because it allows
them to build a range of applications using a single engine, with familiar program‐
ming languages.

Of course, developers may wear many hats and sometimes do both data science and
data engineering tasks, especially in startup companies or smaller engineering groups.
Among all these tasks, however, data—massive amounts of data—is the foundation.

Data science tasks
As a discipline that has come to prominence in the era of big data, data science is
about using data to tell stories. But before they can narrate the stories, data scientists
have to cleanse the data, explore it to discover patterns, and build models to predict
or suggest outcomes. Some of these tasks require knowledge of statistics, mathemat‐
ics, computer science, and programming.

Most data scientists are proficient in using analytical tools like SQL, comfortable with
libraries like NumPy and pandas, and conversant in programming languages like R

14 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/80dKh

and Python. But they must also know how to wrangle or transform data, and how to
use established classification, regression, or clustering algorithms for building mod‐
els. Often their tasks are iterative, interactive or ad hoc, or experimental to assert their
hypotheses.

Fortunately, Spark supports these different tools. Spark’s MLlib offers a common set
of machine learning algorithms to build model pipelines, using high-level estimators,
transformers, and data featurizers. Spark SQL and the Spark shell facilitate interactive
and ad hoc exploration of data.

Additionally, Spark enables data scientists to tackle large data sets and scale their
model training and evaluation. Apache Spark 2.4 introduced a new gang scheduler, as
part of Project Hydrogen, to accommodate the fault-tolerant needs of training and
scheduling deep learning models in a distributed manner, and Spark 3.0 has intro‐
duced the ability to support GPU resource collection in the standalone, YARN, and
Kubernetes deployment modes. This means developers whose tasks demand deep
learning techniques can use Spark.

Data engineering tasks
After building their models, data scientists often need to work with other team mem‐
bers, who may be responsible for deploying the models. Or they may need to work
closely with others to build and transform raw, dirty data into clean data that is easily
consumable or usable by other data scientists. For example, a classification or cluster‐
ing model does not exist in isolation; it works in conjunction with other components
like a web application or a streaming engine such as Apache Kafka, or as part of a
larger data pipeline. This pipeline is often built by data engineers.

Data engineers have a strong understanding of software engineering principles and
methodologies, and possess skills for building scalable data pipelines for a stated busi‐
ness use case. Data pipelines enable end-to-end transformations of raw data coming
from myriad sources—data is cleansed so that it can be consumed downstream by
developers, stored in the cloud or in NoSQL or RDBMSs for report generation, or
made accessible to data analysts via business intelligence tools.

Spark 2.x introduced an evolutionary streaming model called continuous applications
with Structured Streaming (discussed in detail in Chapter 8). With Structured
Streaming APIs, data engineers can build complex data pipelines that enable them to
ETL data from both real-time and static data sources.

Data engineers use Spark because it provides a simple way to parallelize computations
and hides all the complexity of distribution and fault tolerance. This leaves them free
to focus on using high-level DataFrame-based APIs and domain-specific language
(DSL) queries to do ETL, reading and combining data from multiple sources.

The Developer’s Experience | 15

https://oreil.ly/8h3wr
https://oreil.ly/p0_fC

The performance improvements in Spark 2.x and Spark 3.0, due to the Catalyst opti‐
mizer for SQL and Tungsten for compact code generation, have made life for data
engineers much easier. They can choose to use any of the three Spark APIs—RDDs,
DataFrames, or Datasets—that suit the task at hand, and reap the benefits of Spark.

Popular Spark use cases
Whether you are a data engineer, data scientist, or machine learning engineer, you’ll
find Spark useful for the following use cases:

• Processing in parallel large data sets distributed across a cluster
• Performing ad hoc or interactive queries to explore and visualize data sets
• Building, training, and evaluating machine learning models using MLlib
• Implementing end-to-end data pipelines from myriad streams of data
• Analyzing graph data sets and social networks

Community Adoption and Expansion
Not surprisingly, Apache Spark struck a chord in the open source community, espe‐
cially among data engineers and data scientists. Its design philosophy and its inclu‐
sion as an Apache Software Foundation project have fostered immense interest
among the developer community.

Today, there are over 600 Apache Spark Meetup groups globally with close to half a
million members. Every week, someone in the world is giving a talk at a meetup or
conference or sharing a blog post on how to use Spark to build data pipelines. The
Spark + AI Summit is the largest conference dedicated to the use of Spark for
machine learning, data engineering, and data science across many verticals.

Since Spark’s first 1.0 release in 2014 there have been many minor and major releases,
with the most recent major release of Spark 3.0 coming in 2020. This book will cover
aspects of Spark 2.x and Spark 3.0. By the time of its publication the community will
have released Spark 3.0, and most of the code in this book has been tested with Spark
3.0-preview2.

Over the course of its releases, Spark has continued to attract contributors from
across the globe and from numerous organizations. Today, Spark has close to 1,500
contributors, well over 100 releases, 21,000 forks, and some 27,000 commits on Git‐
Hub, as Figure 1-7 shows. And we hope that when you finish this book, you will feel
compelled to contribute too.

16 | Chapter 1: Introduction to Apache Spark: A Unified Analytics Engine

https://oreil.ly/pAHKJ
https://oreil.ly/pAHKJ
https://oreil.ly/nIE6h
https://oreil.ly/c1sf8
https://oreil.ly/XjqQN
https://oreil.ly/G9vYT

Figure 1-7. The state of Apache Spark on GitHub (source: https://github.com/apache/
spark)

Now we can turn our attention to the fun of learning—where and how to start using
Spark. In the next chapter, we’ll show you how to get up and running with Spark in
three simple steps.

The Developer’s Experience | 17

https://github.com/apache/spark
https://github.com/apache/spark

CHAPTER 2

Downloading Apache Spark
and Getting Started

In this chapter, we will get you set up with Spark and walk through three simple steps
you can take to get started writing your first standalone application.

We will use local mode, where all the processing is done on a single machine in a
Spark shell—this is an easy way to learn the framework, providing a quick feedback
loop for iteratively performing Spark operations. Using a Spark shell, you can proto‐
type Spark operations with small data sets before writing a complex Spark applica‐
tion, but for large data sets or real work where you want to reap the benefits of
distributed execution, local mode is not suitable—you’ll want to use the YARN or
Kubernetes deployment modes instead.

While the Spark shell only supports Scala, Python, and R, you can write a Spark
application in any of the supported languages (including Java) and issue queries in
Spark SQL. We do expect you to have some familiarity with the language of your
choice.

Step 1: Downloading Apache Spark
To get started, go to the Spark download page, select “Pre-built for Apache Hadoop
2.7” from the drop-down menu in step 2, and click the “Download Spark” link in step
3 (Figure 2-1).

19

https://oreil.ly/tbKY2

Figure 2-1. The Apache Spark download page

This will download the tarball spark-3.0.0-preview2-bin-hadoop2.7.tgz, which con‐
tains all the Hadoop-related binaries you will need to run Spark in local mode on
your laptop. Alternatively, if you’re going to install it on an existing HDFS or Hadoop
installation, you can select the matching Hadoop version from the drop-down menu.
How to build from source is beyond the scope of this book, but you can read more
about it in the documentation.

At the time this book went to press Apache Spark 3.0 was still in
preview mode, but you can download the latest Spark 3.0 using the
same download method and instructions.

Since the release of Apache Spark 2.2, developers who only care about learning Spark
in Python have the option of installing PySpark from the PyPI repository. If you only
program in Python, you don’t have to install all the other libraries necessary to run
Scala, Java, or R; this makes the binary smaller. To install PySpark from PyPI, just run
pip install pyspark.

There are some extra dependencies that can be installed for SQL, ML, and MLlib, via
pip install pyspark[sql,ml,mllib] (or pip install pyspark[sql] if you only
want the SQL dependencies).

You will need to install Java 8 or above on your machine and set the
JAVA_HOME environment variable. See the documentation for
instructions on how to download and install Java.

20 | Chapter 2: Downloading Apache Spark and Getting Started

https://oreil.ly/fOyIN
https://oreil.ly/gyAi8
https://oreil.ly/c19W9

If you want to run R in an interpretive shell mode, you must install R and then run
sparkR. To do distributed computing with R, you can also use the open source project
sparklyr, created by the R community.

Spark’s Directories and Files
We assume that you are running a version of the Linux or macOS operating system
on your laptop or cluster, and all the commands and instructions in this book will be
in that flavor. Once you have finished downloading the tarball, cd to the downloaded
directory, extract the tarball contents with tar -xf spark-3.0.0-preview2-bin-
hadoop2.7.tgz, and cd into that directory and take a look at the contents:

$ cd spark-3.0.0-preview2-bin-hadoop2.7
$ ls
LICENSE R RELEASE conf examples kubernetes python yarn
NOTICE README.md bin data jars licenses sbin

Let’s briefly summarize the intent and purpose of some of these files and directories.
New items were added in Spark 2.x and 3.0, and the contents of some of the existing
files and directories were changed too:

README.md
This file contains new detailed instructions on how to use Spark shells, build
Spark from source, run standalone Spark examples, peruse links to Spark docu‐
mentation and configuration guides, and contribute to Spark.

bin
This directory, as the name suggests, contains most of the scripts you’ll employ to
interact with Spark, including the Spark shells (spark-sql, pyspark, spark-
shell, and sparkR). We will use these shells and executables in this directory
later in this chapter to submit a standalone Spark application using spark-
submit, and write a script that builds and pushes Docker images when running
Spark with Kubernetes support.

sbin
Most of the scripts in this directory are administrative in purpose, for starting
and stopping Spark components in the cluster in its various deployment
modes. For details on the deployment modes, see the cheat sheet in Table 1-1 in
Chapter 1.

kubernetes
Since the release of Spark 2.4, this directory contains Dockerfiles for creating
Docker images for your Spark distribution on a Kubernetes cluster. It also con‐
tains a file providing instructions on how to build the Spark distribution before
building your Docker images.

Step 1: Downloading Apache Spark | 21

https://www.r-project.org
https://github.com/sparklyr/sparklyr

data
This directory is populated with *.txt files that serve as input for Spark’s compo‐
nents: MLlib, Structured Streaming, and GraphX.

examples
For any developer, two imperatives that ease the journey to learning any new
platform are loads of “how-to” code examples and comprehensive documenta‐
tion. Spark provides examples for Java, Python, R, and Scala, and you’ll want to
employ them when learning the framework. We will allude to some of these
examples in this and subsequent chapters.

Step 2: Using the Scala or PySpark Shell
As mentioned earlier, Spark comes with four widely used interpreters that act like
interactive “shells” and enable ad hoc data analysis: pyspark, spark-shell, spark-
sql, and sparkR. In many ways, their interactivity imitates shells you’ll already be
familiar with if you have experience with Python, Scala, R, SQL, or Unix operating
system shells such as bash or the Bourne shell.

These shells have been augmented to support connecting to the cluster and to allow
you to load distributed data into Spark workers’ memory. Whether you are dealing
with gigabytes of data or small data sets, Spark shells are conducive to learning Spark
quickly.

To start PySpark, cd to the bin directory and launch a shell by typing pyspark. If you
have installed PySpark from PyPI, then just typing pyspark will suffice:

$ pyspark
Python 3.7.3 (default, Mar 27 2019, 09:23:15)
[Clang 10.0.1 (clang-1001.0.46.3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
20/02/16 19:28:48 WARN NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 3.0.0-preview2
 /_/

Using Python version 3.7.3 (default, Mar 27 2019 09:23:15)
SparkSession available as 'spark'.
>>> spark.version
'3.0.0-preview2'
>>>

22 | Chapter 2: Downloading Apache Spark and Getting Started

To start a similar Spark shell with Scala, cd to the bin directory and type
spark-shell:

$ spark-shell
20/05/07 19:30:26 WARN NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://10.0.1.7:4040
Spark context available as 'sc' (master = local[*], app id = local-1581910231902)
Spark session available as 'spark'.
Welcome to

 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 3.0.0-preview2
 /_/

Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_241)
Type in expressions to have them evaluated.
Type :help for more information.
scala> spark.version
res0: String = 3.0.0-preview2
scala>

Using the Local Machine
Now that you’ve downloaded and installed Spark on your local machine, for the
remainder of this chapter you’ll be using Spark interpretive shells locally. That is,
Spark will be running in local mode.

Refer to Table 1-1 in Chapter 1 for a reminder of which compo‐
nents run where in local mode.

As noted in the previous chapter, Spark computations are expressed as operations.
These operations are then converted into low-level RDD-based bytecode as tasks,
which are distributed to Spark’s executors for execution.

Let’s look at a short example where we read in a text file as a DataFrame, show a sam‐
ple of the strings read, and count the total number of lines in the file. This simple
example illustrates the use of the high-level Structured APIs, which we will cover in
the next chapter. The show(10, false) operation on the DataFrame only displays the
first 10 lines without truncating; by default the truncate Boolean flag is true. Here’s
what this looks like in the Scala shell:

Step 2: Using the Scala or PySpark Shell | 23

scala> val strings = spark.read.text("../README.md")
strings: org.apache.spark.sql.DataFrame = [value: string]

scala> strings.show(10, false)
+--+
|value |
+--+
|# Apache Spark |
| |
|Spark is a unified analytics engine for large-scale data processing. It |
|provides high-level APIs in Scala, Java, Python, and R, and an optimized |
|engine that supports general computation graphs for data analysis. It also |
|supports a rich set of higher-level tools including Spark SQL for SQL and |
|DataFrames, MLlib for machine learning, GraphX for graph processing, |
| and Structured Streaming for stream processing. |
| |
|<https://spark.apache.org/> |
+--+
only showing top 10 rows

scala> strings.count()
res2: Long = 109
scala>

Quite simple. Let’s look at a similar example using the Python interpretive shell,
pyspark:

$ pyspark
Python 3.7.3 (default, Mar 27 2019, 09:23:15)
[Clang 10.0.1 (clang-1001.0.46.3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.spark.unsafe.Platform
WARNING: Use --illegal-access=warn to enable warnings of further illegal
reflective access operations
WARNING: All illegal access operations will be denied in a future release
20/01/10 11:28:29 WARN NativeCodeLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Welcome to

 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 3.0.0-preview2
 /_/

Using Python version 3.7.3 (default, Mar 27 2019 09:23:15)
SparkSession available as 'spark'.
>>> strings = spark.read.text("../README.md")

24 | Chapter 2: Downloading Apache Spark and Getting Started

>>> strings.show(10, truncate=False)
+--+
|value |
+--+
|# Apache Spark |
| |
|Spark is a unified analytics engine for large-scale data processing. It |
|provides high-level APIs in Scala, Java, Python, and R, and an optimized |
|engine that supports general computation graphs for data analysis. It also |
|supports a rich set of higher-level tools including Spark SQL for SQL and |
|DataFrames, MLlib for machine learning, GraphX for graph processing, |
|and Structured Streaming for stream processing. |
| |
|<https://spark.apache.org/> |
+--+
only showing top 10 rows

>>> strings.count()
109
>>>

To exit any of the Spark shells, press Ctrl-D. As you can see, this rapid interactivity
with Spark shells is conducive not only to rapid learning but to rapid prototyping,
too.

In the preceding examples, notice the API syntax and signature parity across both
Scala and Python. Throughout Spark’s evolution from 1.x, that has been one (among
many) of the enduring improvements.

Also note that we used the high-level Structured APIs to read a text file into a Spark
DataFrame rather than an RDD. Throughout the book, we will focus more on these
Structured APIs; since Spark 2.x, RDDs are now consigned to low-level APIs.

Every computation expressed in high-level Structured APIs is
decomposed into low-level optimized and generated RDD opera‐
tions and then converted into Scala bytecode for the executors’
JVMs. This generated RDD operation code is not accessible to
users, nor is it the same as the user-facing RDD APIs.

Step 3: Understanding Spark Application Concepts
Now that you have downloaded Spark, installed it on your laptop in standalone
mode, launched a Spark shell, and executed some short code examples interactively,
you’re ready to take the final step.

To understand what’s happening under the hood with our sample code, you’ll need to
be familiar with some of the key concepts of a Spark application and how the code is

Step 3: Understanding Spark Application Concepts | 25

transformed and executed as tasks across the Spark executors. We’ll begin by defining
some important terms:

Application
A user program built on Spark using its APIs. It consists of a driver program and
executors on the cluster.

SparkSession

An object that provides a point of entry to interact with underlying Spark func‐
tionality and allows programming Spark with its APIs. In an interactive Spark
shell, the Spark driver instantiates a SparkSession for you, while in a Spark
application, you create a SparkSession object yourself.

Job
A parallel computation consisting of multiple tasks that gets spawned in response
to a Spark action (e.g., save(), collect()).

Stage
Each job gets divided into smaller sets of tasks called stages that depend on each
other.

Task
A single unit of work or execution that will be sent to a Spark executor.

Let’s dig into these concepts in a little more detail.

Spark Application and SparkSession
At the core of every Spark application is the Spark driver program, which creates a
SparkSession object. When you’re working with a Spark shell, the driver is part of
the shell and the SparkSession object (accessible via the variable spark) is created for
you, as you saw in the earlier examples when you launched the shells.

In those examples, because you launched the Spark shell locally on your laptop, all the
operations ran locally, in a single JVM. But you can just as easily launch a Spark shell
to analyze data in parallel on a cluster as in local mode. The commands spark-shell
--help or pyspark --help will show you how to connect to the Spark cluster man‐
ager. Figure 2-2 shows how Spark executes on a cluster once you’ve done this.

26 | Chapter 2: Downloading Apache Spark and Getting Started

Figure 2-2. Spark components communicate through the Spark driver in Spark’s dis‐
tributed architecture

Once you have a SparkSession, you can program Spark using the APIs to perform
Spark operations.

Spark Jobs
During interactive sessions with Spark shells, the driver converts your Spark applica‐
tion into one or more Spark jobs (Figure 2-3). It then transforms each job into a
DAG. This, in essence, is Spark’s execution plan, where each node within a DAG
could be a single or multiple Spark stages.

Figure 2-3. Spark driver creating one or more Spark jobs

Step 3: Understanding Spark Application Concepts | 27

https://oreil.ly/2r5Xo

Spark Stages
As part of the DAG nodes, stages are created based on what operations can be per‐
formed serially or in parallel (Figure 2-4). Not all Spark operations can happen in a
single stage, so they may be divided into multiple stages. Often stages are delineated
on the operator’s computation boundaries, where they dictate data transfer among
Spark executors.

Figure 2-4. Spark job creating one or more stages

Spark Tasks
Each stage is comprised of Spark tasks (a unit of execution), which are then federated
across each Spark executor; each task maps to a single core and works on a single par‐
tition of data (Figure 2-5). As such, an executor with 16 cores can have 16 or more
tasks working on 16 or more partitions in parallel, making the execution of Spark’s
tasks exceedingly parallel!

Figure 2-5. Spark stage creating one or more tasks to be distributed to executors

Transformations, Actions, and Lazy Evaluation
Spark operations on distributed data can be classified into two types: transformations
and actions. Transformations, as the name suggests, transform a Spark DataFrame
into a new DataFrame without altering the original data, giving it the property of
immutability. Put another way, an operation such as select() or filter() will not
change the original DataFrame; instead, it will return the transformed results of the
operation as a new DataFrame.

28 | Chapter 2: Downloading Apache Spark and Getting Started

All transformations are evaluated lazily. That is, their results are not computed imme‐
diately, but they are recorded or remembered as a lineage. A recorded lineage allows
Spark, at a later time in its execution plan, to rearrange certain transformations, coa‐
lesce them, or optimize transformations into stages for more efficient execution. Lazy
evaluation is Spark’s strategy for delaying execution until an action is invoked or data
is “touched” (read from or written to disk).

An action triggers the lazy evaluation of all the recorded transformations. In
Figure 2-6, all transformations T are recorded until the action A is invoked. Each
transformation T produces a new DataFrame.

Figure 2-6. Lazy transformations and eager actions

While lazy evaluation allows Spark to optimize your queries by peeking into your
chained transformations, lineage and data immutability provide fault tolerance.
Because Spark records each transformation in its lineage and the DataFrames are
immutable between transformations, it can reproduce its original state by simply
replaying the recorded lineage, giving it resiliency in the event of failures.

Table 2-1 lists some examples of transformations and actions.

Table 2-1. Transformations and actions as Spark operations

Transformations Actions
orderBy() show()

groupBy() take()

filter() count()

select() collect()

join() save()

The actions and transformations contribute to a Spark query plan, which we will
cover in the next chapter. Nothing in a query plan is executed until an action is
invoked. The following example, shown both in Python and Scala, has two transfor‐
mations—read() and filter()—and one action—count(). The action is what

Transformations, Actions, and Lazy Evaluation | 29

triggers the execution of all transformations recorded as part of the query execution
plan. In this example, nothing happens until filtered.count() is executed in the
shell:

In Python
>>> strings = spark.read.text("../README.md")
>>> filtered = strings.filter(strings.value.contains("Spark"))
>>> filtered.count()
20

// In Scala
scala> import org.apache.spark.sql.functions._
scala> val strings = spark.read.text("../README.md")
scala> val filtered = strings.filter(col("value").contains("Spark"))
scala> filtered.count()
res5: Long = 20

Narrow and Wide Transformations
As noted, transformations are operations that Spark evaluates lazily. A huge advan‐
tage of the lazy evaluation scheme is that Spark can inspect your computational query
and ascertain how it can optimize it. This optimization can be done by either joining
or pipelining some operations and assigning them to a stage, or breaking them into
stages by determining which operations require a shuffle or exchange of data across
clusters.

Transformations can be classified as having either narrow dependencies or wide
dependencies. Any transformation where a single output partition can be computed
from a single input partition is a narrow transformation. For example, in the previous
code snippet, filter() and contains() represent narrow transformations because
they can operate on a single partition and produce the resulting output partition
without any exchange of data.

However, groupBy() or orderBy() instruct Spark to perform wide transformations,
where data from other partitions is read in, combined, and written to disk. Since each
partition will have its own count of the word that contains the “Spark” word in its row
of data, a count (groupBy()) will force a shuffle of data from each of the executor’s
partitions across the cluster. In this transformation, orderBy() requires output from
other partitions to compute the final aggregation.

Figure 2-7 illustrates the two types of dependencies.

30 | Chapter 2: Downloading Apache Spark and Getting Started

Figure 2-7. Narrow versus wide transformations

The Spark UI
Spark includes a graphical user interface that you can use to inspect or monitor Spark
applications in their various stages of decomposition—that is jobs, stages, and tasks.
Depending on how Spark is deployed, the driver launches a web UI, running by
default on port 4040, where you can view metrics and details such as:

• A list of scheduler stages and tasks
• A summary of RDD sizes and memory usage
• Information about the environment
• Information about the running executors
• All the Spark SQL queries

In local mode, you can access this interface at http://<localhost>:4040 in a web
browser.

When you launch spark-shell, part of the output shows the local‐
host URL to access at port 4040.

Let’s inspect how the Python example from the previous section translates into jobs,
stages, and tasks. To view what the DAG looks like, click on “DAG Visualization” in
the web UI. As Figure 2-8 shows, the driver created a single job and a single stage.

The Spark UI | 31

https://oreil.ly/AXg5h

Figure 2-8. The DAG for our simple Python example

Notice that there is no Exchange, where data is exchanged between executors,
required because there is only a single stage. The individual operations of the stage
are shown in blue boxes.

Stage 0 is comprised of one task. If you have multiple tasks, they will be executed in
parallel. You can view the details of each stage in the Stages tab, as shown in
Figure 2-9.

32 | Chapter 2: Downloading Apache Spark and Getting Started

Figure 2-9. Details of stage 0

We will cover the Spark UI in more detail in Chapter 7. For now, just note that the UI
provides a microscopic lens into Spark’s internal workings as a tool for debugging
and inspecting.

The Spark UI | 33

Databricks Community Edition
Databricks is a company that offers a managed Apache Spark platform in the cloud.
Aside from using your local machine to run Spark in local mode, you can try some of
the examples in this and other chapters using the free Databricks Community Edition
(Figure 2-10). As a learning tool for Apache Spark, the Community Edition has many
tutorials and examples worthy of note. As well as writing your own notebooks in
Python, R, Scala, or SQL, you can also import other notebooks, including Jupyter
notebooks.

Figure 2-10. Databricks Community Edition

To get an account, go to https://databricks.com/try and follow the instructions to try
the Community Edition for free. Once registered, you can import the notebooks for
this book from its GitHub repo.

Your First Standalone Application
To facilitate learning and exploring, the Spark distribution comes with a set of sample
applications for each of Spark’s components. You are welcome to peruse the examples
directory in your installation location to get an idea of what’s available.

From the installation directory on your local machine, you can run one of the several
Java or Scala sample programs that are provided using the command bin/run-
example <class> [params]. For example:

$./bin/run-example JavaWordCount README.md

This will spew out INFO messages on your console along with a list of each word in
the README.md file and its count (counting words is the “Hello, World” of dis‐
tributed computing).

34 | Chapter 2: Downloading Apache Spark and Getting Started

https://databricks.com/try
https://github.com/databricks/LearningSparkV2

Counting M&Ms for the Cookie Monster
In the previous example, we counted words in a file. If the file were huge, it would be
distributed across a cluster partitioned into small chunks of data, and our Spark pro‐
gram would distribute the task of counting each word in each partition and return us
the final aggregated count. But that example has become a bit of a cliche.

Let’s solve a similar problem, but with a larger data set and using more of Spark’s dis‐
tribution functionality and DataFrame APIs. We will cover the APIs used in this pro‐
gram in later chapters, but for now bear with us.

Among the authors of this book is a data scientist who loves to bake cookies with
M&Ms in them, and she rewards her students in the US states where she frequently
teaches machine learning and data science courses with batches of those cookies. But
she’s data-driven, obviously, and wants to ensure that she gets the right colors of
M&Ms in the cookies for students in the different states (Figure 2-11).

Figure 2-11. Distribution of M&Ms by color (source: https://oreil.ly/mhWIT)

Let’s write a Spark program that reads a file with over 100,000 entries (where each
row or line has a <state, mnm_color, count>) and computes and aggregates the
counts for each color and state. These aggregated counts tell us the colors of M&Ms
favored by students in each state. The complete Python listing is provided in
Example 2-1.

Your First Standalone Application | 35

https://oreil.ly/mhWIT

Example 2-1. Counting and aggregating M&Ms (Python version)

Import the necessary libraries.
Since we are using Python, import the SparkSession and related functions
from the PySpark module.
import sys

from pyspark.sql import SparkSession
from pyspark.sql.functions import count

if __name__ == "__main__":
 if len(sys.argv) != 2:
 print("Usage: mnmcount <file>", file=sys.stderr)
 sys.exit(-1)

 # Build a SparkSession using the SparkSession APIs.
 # If one does not exist, then create an instance. There
 # can only be one SparkSession per JVM.
 spark = (SparkSession
 .builder
 .appName("PythonMnMCount")
 .getOrCreate())
 # Get the M&M data set filename from the command-line arguments
 mnm_file = sys.argv[1]
 # Read the file into a Spark DataFrame using the CSV
 # format by inferring the schema and specifying that the
 # file contains a header, which provides column names for comma-
 # separated fields.
 mnm_df = (spark.read.format("csv")
 .option("header", "true")
 .option("inferSchema", "true")
 .load(mnm_file))

 # We use the DataFrame high-level APIs. Note
 # that we don't use RDDs at all. Because some of Spark's
 # functions return the same object, we can chain function calls.
 # 1. Select from the DataFrame the fields "State", "Color", and "Count"
 # 2. Since we want to group each state and its M&M color count,
 # we use groupBy()
 # 3. Aggregate counts of all colors and groupBy() State and Color
 # 4 orderBy() in descending order
 count_mnm_df = (mnm_df
 .select("State", "Color", "Count")
 .groupBy("State", "Color")
 .agg(count("Count").alias("Total"))
 .orderBy("Total", ascending=False))
 # Show the resulting aggregations for all the states and colors;
 # a total count of each color per state.
 # Note show() is an action, which will trigger the above
 # query to be executed.
 count_mnm_df.show(n=60, truncate=False)
 print("Total Rows = %d" % (count_mnm_df.count()))

36 | Chapter 2: Downloading Apache Spark and Getting Started

 # While the above code aggregated and counted for all
 # the states, what if we just want to see the data for
 # a single state, e.g., CA?
 # 1. Select from all rows in the DataFrame
 # 2. Filter only CA state
 # 3. groupBy() State and Color as we did above
 # 4. Aggregate the counts for each color
 # 5. orderBy() in descending order
 # Find the aggregate count for California by filtering
 ca_count_mnm_df = (mnm_df
 .select("State", "Color", "Count")
 .where(mnm_df.State == "CA")
 .groupBy("State", "Color")
 .agg(count("Count").alias("Total"))
 .orderBy("Total", ascending=False))
 # Show the resulting aggregation for California.
 # As above, show() is an action that will trigger the execution of the
 # entire computation.
 ca_count_mnm_df.show(n=10, truncate=False)
 # Stop the SparkSession
 spark.stop()

You can enter this code into a Python file called mnmcount.py using your favorite edi‐
tor, download the mnn_dataset.csv file from this book’s GitHub repo, and submit it as
a Spark job using the submit-spark script in the installation’s bin directory. Set your
SPARK_HOME environment variable to the root-level directory where you installed
Spark on your local machine.

The preceding code uses the DataFrame API, which reads like
high-level DSL queries. We will cover this and the other APIs in the
next chapter; for now, note the clarity and simplicity with which
you can instruct Spark what to do, not how to do it, unlike with the
RDD API. Cool stuff!

To avoid having verbose INFO messages printed to the console, copy the log4j.proper‐
ties.template file to log4j.properties and set log4j.rootCategory=WARN in the
conf/log4j.properties file.

Let’s submit our first Spark job using the Python APIs (for an explanation of what the
code does, please read the inline comments in Example 2-1):

$SPARK_HOME/bin/spark-submit mnmcount.py data/mnm_dataset.csv

+-----+------+-----+
|State|Color |Total|
+-----+------+-----+
CA	Yellow	1807
WA	Green	1779
OR	Orange	1743

Your First Standalone Application | 37

https://github.com/databricks/LearningSparkV2

TX	Green	1737
TX	Red	1725
CA	Green	1723
CO	Yellow	1721
CA	Brown	1718
CO	Green	1713
NV	Orange	1712
TX	Yellow	1703
NV	Green	1698
AZ	Brown	1698
CO	Blue	1695
WY	Green	1695
NM	Red	1690
AZ	Orange	1689
NM	Yellow	1688
NM	Brown	1687
UT	Orange	1684
NM	Green	1682
UT	Red	1680
AZ	Green	1676
NV	Yellow	1675
NV	Blue	1673
WA	Red	1671
WY	Red	1670
WA	Brown	1669
NM	Orange	1665
WY	Blue	1664
WA	Yellow	1663
WA	Orange	1658
NV	Brown	1657
CA	Orange	1657
CA	Red	1656
CO	Brown	1656
UT	Blue	1655
AZ	Yellow	1654
TX	Orange	1652
AZ	Red	1648
OR	Blue	1646
UT	Yellow	1645
OR	Red	1645
CO	Orange	1642
TX	Brown	1641
NM	Blue	1638
AZ	Blue	1636
OR	Green	1634
UT	Brown	1631
WY	Yellow	1626
WA	Blue	1625
CO	Red	1624
OR	Brown	1621
TX	Blue	1614
OR	Yellow	1614

38 | Chapter 2: Downloading Apache Spark and Getting Started

NV	Red	1610
CA	Blue	1603
WY	Orange	1595
UT	Green	1591
WY	Brown	1532
+-----+------+-----+

Total Rows = 60

+-----+------+-----+
|State|Color |Total|
+-----+------+-----+
CA	Yellow	1807
CA	Green	1723
CA	Brown	1718
CA	Orange	1657
CA	Red	1656
CA	Blue	1603
+-----+------+-----+

First we see all the aggregations for each M&M color for each state, followed by those
only for CA (where the preferred color is yellow).

What if you want to use a Scala version of this same Spark program? The APIs are
similar; in Spark, parity is well preserved across the supported languages, with minor
syntax differences. Example 2-2 is the Scala version of the program. Take a look, and
in the next section we’ll show you how to build and run the application.

Example 2-2. Counting and aggregating M&Ms (Scala version)

package main.scala.chapter2

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

/**
 * Usage: MnMcount <mnm_file_dataset>
 */
object MnMcount {
 def main(args: Array[String]) {
 val spark = SparkSession
 .builder
 .appName("MnMCount")
 .getOrCreate()

 if (args.length < 1) {
 print("Usage: MnMcount <mnm_file_dataset>")
 sys.exit(1)
 }
 // Get the M&M data set filename
 val mnmFile = args(0)

Your First Standalone Application | 39

 // Read the file into a Spark DataFrame
 val mnmDF = spark.read.format("csv")
 .option("header", "true")
 .option("inferSchema", "true")
 .load(mnmFile)
 // Aggregate counts of all colors and groupBy() State and Color
 // orderBy() in descending order
 val countMnMDF = mnmDF
 .select("State", "Color", "Count")
 .groupBy("State", "Color")
 .agg(count("Count").alias("Total"))
 .orderBy(desc("Total"))
 // Show the resulting aggregations for all the states and colors
 countMnMDF.show(60)
 println(s"Total Rows = ${countMnMDF.count()}")
 println()
 // Find the aggregate counts for California by filtering
 val caCountMnMDF = mnmDF
 .select("State", "Color", "Count")
 .where(col("State") === "CA")
 .groupBy("State", "Color")
 .agg(count("Count").alias("Total"))
 .orderBy(desc("Total"))
 // Show the resulting aggregations for California
 caCountMnMDF.show(10)
 // Stop the SparkSession
 spark.stop()
 }
}

Building Standalone Applications in Scala
We will now show you how to build your first Scala Spark program, using the Scala
Build Tool (sbt).

Because Python is an interpreted language and there is no such
step as compiling first (though it’s possible to compile your Python
code into bytecode in .pyc), we will not go into this step here. For
details on how to use Maven to build Java Spark programs, we refer
you to the guide on the Apache Spark website. For brevity in this
book, we cover examples mainly in Python and Scala.

build.sbt is the specification file that, like a makefile, describes and instructs the Scala
compiler to build your Scala-related tasks, such as jars, packages, what dependencies
to resolve, and where to look for them. In our case, we have a simple sbt file for our
M&M code (Example 2-3).

40 | Chapter 2: Downloading Apache Spark and Getting Started

https://www.scala-sbt.org
https://www.scala-sbt.org
https://oreil.ly/1qMlG

Example 2-3. sbt build file

// Name of the package
name := "main/scala/chapter2"
// Version of our package
version := "1.0"
// Version of Scala
scalaVersion := "2.12.10"
// Spark library dependencies
libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-core" % "3.0.0-preview2",
 "org.apache.spark" %% "spark-sql" % "3.0.0-preview2"
)

Assuming that you have the Java Development Kit (JDK) and sbt installed and
JAVA_HOME and SPARK_HOME set, with a single command, you can build your Spark
application:

$ sbt clean package
[info] Updated file /Users/julesdamji/gits/LearningSparkV2/chapter2/scala/
project/build.properties: set sbt.version to 1.2.8
[info] Loading project definition from /Users/julesdamji/gits/LearningSparkV2/
chapter2/scala/project
[info] Updating
[info] Done updating.
...
[info] Compiling 1 Scala source to /Users/julesdamji/gits/LearningSparkV2/
chapter2/scala/target/scala-2.12/classes ...
[info] Done compiling.
[info] Packaging /Users/julesdamji/gits/LearningSparkV2/chapter2/scala/target/
scala-2.12/main-scala-chapter2_2.12-1.0.jar ...
[info] Done packaging.
[success] Total time: 6 s, completed Jan 11, 2020, 4:11:02 PM

After a successful build, you can run the Scala version of the M&M count example as
follows:

$SPARK_HOME/bin/spark-submit --class main.scala.chapter2.MnMcount \
jars/main-scala-chapter2_2.12-1.0.jar data/mnm_dataset.csv
...
...
20/01/11 16:00:48 INFO TaskSchedulerImpl: Killing all running tasks in stage 4:
Stage finished
20/01/11 16:00:48 INFO DAGScheduler: Job 4 finished: show at MnMcount.scala:49,
took 0.264579 s
+-----+------+-----+
|State| Color|Total|
+-----+------+-----+
CA	Yellow	1807
CA	Green	1723
CA	Brown	1718
CA	Orange	1657

Your First Standalone Application | 41

https://oreil.ly/AfpMz

| CA| Red| 1656|
| CA| Blue| 1603|
+-----+------+-----+

The output is the same as for the Python run. Try it!

There you have it—our data scientist author will be more than happy to use this data
to decide what colors of M&Ms to use in the cookies she bakes for her classes in any
of the states she teaches in.

Summary
In this chapter, we covered the three simple steps you need to take to get started with
Apache Spark: downloading the framework, familiarizing yourself with the Scala or
PySpark interactive shell, and getting to grips with high-level Spark application con‐
cepts and terms. We gave a quick overview of the process by which you can use trans‐
formations and actions to write a Spark application, and we briefly introduced using
the Spark UI to examine the jobs, stages, and tasks created.

Finally, through a short example, we showed you how you can use the high-level
Structured APIs to tell Spark what to do—which brings us to the next chapter, where
we examine those APIs in more detail.

42 | Chapter 2: Downloading Apache Spark and Getting Started

CHAPTER 3

Apache Spark’s Structured APIs

In this chapter, we will explore the principal motivations behind adding structure to
Apache Spark, how those motivations led to the creation of high-level APIs (Data‐
Frames and Datasets), and their unification in Spark 2.x across its components. We’ll
also look at the Spark SQL engine that underpins these structured high-level APIs.

When Spark SQL was first introduced in the early Spark 1.x releases, followed by
DataFrames as a successor to SchemaRDDs in Spark 1.3, we got our first glimpse of
structure in Spark. Spark SQL introduced high-level expressive operational functions,
mimicking SQL-like syntax, and DataFrames, which laid the foundation for more
structure in subsequent releases, paved the path to performant operations in Spark’s
computational queries.

But before we talk about the newer Structured APIs, let’s get a brief glimpse of what
it’s like to not have structure in Spark by taking a peek at the simple RDD program‐
ming API model.

Spark: What’s Underneath an RDD?
The RDD is the most basic abstraction in Spark. There are three vital characteristics
associated with an RDD:

• Dependencies
• Partitions (with some locality information)
• Compute function: Partition => Iterator[T]

43

https://oreil.ly/cfd1r
https://oreil.ly/kErKh
https://oreil.ly/-o1-k
https://oreil.ly/KON5Y

All three are integral to the simple RDD programming API model upon which all
higher-level functionality is constructed. First, a list of dependencies that instructs
Spark how an RDD is constructed with its inputs is required. When necessary to
reproduce results, Spark can recreate an RDD from these dependencies and replicate
operations on it. This characteristic gives RDDs resiliency.

Second, partitions provide Spark the ability to split the work to parallelize computa‐
tion on partitions across executors. In some cases—for example, reading from
HDFS—Spark will use locality information to send work to executors close to the
data. That way less data is transmitted over the network.

And finally, an RDD has a compute function that produces an Iterator[T] for the
data that will be stored in the RDD.

Simple and elegant! Yet there are a couple of problems with this original model. For
one, the compute function (or computation) is opaque to Spark. That is, Spark does
not know what you are doing in the compute function. Whether you are performing
a join, filter, select, or aggregation, Spark only sees it as a lambda expression. Another
problem is that the Iterator[T] data type is also opaque for Python RDDs; Spark
only knows that it’s a generic object in Python.

Furthermore, because it’s unable to inspect the computation or expression in the
function, Spark has no way to optimize the expression—it has no comprehension of
its intention. And finally, Spark has no knowledge of the specific data type in T. To
Spark it’s an opaque object; it has no idea if you are accessing a column of a certain
type within an object. Therefore, all Spark can do is serialize the opaque object as a
series of bytes, without using any data compression techniques.

This opacity clearly hampers Spark’s ability to rearrange your computation into an
efficient query plan. So what’s the solution?

Structuring Spark
Spark 2.x introduced a few key schemes for structuring Spark. One is to express com‐
putations by using common patterns found in data analysis. These patterns are
expressed as high-level operations such as filtering, selecting, counting, aggregating,
averaging, and grouping. This provides added clarity and simplicity.

This specificity is further narrowed through the use of a set of common operators in a
DSL. Through a set of operations in DSL, available as APIs in Spark’s supported lan‐
guages (Java, Python, Spark, R, and SQL), these operators let you tell Spark what you
wish to compute with your data, and as a result, it can construct an efficient query
plan for execution.

44 | Chapter 3: Apache Spark’s Structured APIs

And the final scheme of order and structure is to allow you to arrange your data in a
tabular format, like a SQL table or spreadsheet, with supported structured data types
(which we will cover shortly).

But what’s all this structure good for?

Key Merits and Benefits
Structure yields a number of benefits, including better performance and space effi‐
ciency across Spark components. We will explore these benefits further when we talk
about the use of the DataFrame and Dataset APIs shortly, but for now we’ll concen‐
trate on the other advantages: expressivity, simplicity, composability, and uniformity.

Let’s demonstrate expressivity and composability first, with a simple code snippet. In
the following example, we want to aggregate all the ages for each name, group by
name, and then average the ages—a common pattern in data analysis and discovery.
If we were to use the low-level RDD API for this, the code would look as follows:

In Python
Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules", 30),
 ("TD", 35), ("Brooke", 25)])
Use map and reduceByKey transformations with their lambda
expressions to aggregate and then compute average

agesRDD = (dataRDD
 .map(lambda x: (x[0], (x[1], 1)))
 .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
 .map(lambda x: (x[0], x[1][0]/x[1][1])))

No one would dispute that this code, which tells Spark how to aggregate keys and
compute averages with a string of lambda functions, is cryptic and hard to read. In
other words, the code is instructing Spark how to compute the query. It’s completely
opaque to Spark, because it doesn’t communicate the intention. Furthermore, the
equivalent RDD code in Scala would look very different from the Python code shown
here.

By contrast, what if we were to express the same query with high-level DSL operators
and the DataFrame API, thereby instructing Spark what to do? Have a look:

In Python
from pyspark.sql import SparkSession
from pyspark.sql.functions import avg
Create a DataFrame using SparkSession
spark = (SparkSession
 .builder
 .appName("AuthorsAges")
 .getOrCreate())
Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), ("Jules", 30),

Structuring Spark | 45

 ("TD", 35), ("Brooke", 25)], ["name", "age"])
Group the same names together, aggregate their ages, and compute an average
avg_df = data_df.groupBy("name").agg(avg("age"))
Show the results of the final execution
avg_df.show()

+------+--------+
| name|avg(age)|
+------+--------+
Brooke	22.5
Jules	30.0
TD	35.0
Denny	31.0
+------+--------+

This version of the code is far more expressive as well as simpler than the earlier ver‐
sion, because we are using high-level DSL operators and APIs to tell Spark what to
do. In effect, we have employed these operators to compose our query. And because
Spark can inspect or parse this query and understand our intention, it can optimize
or arrange the operations for efficient execution. Spark knows exactly what we wish
to do: group people by their names, aggregate their ages, and then compute the aver‐
age age of all people with the same name. We’ve composed an entire computation
using high-level operators as a single simple query—how expressive is that?

Some would contend that by using only high-level, expressive DSL operators mapped
to common or recurring data analysis patterns to introduce order and structure, we
are limiting the scope of the developers’ ability to instruct the compiler or control
how their queries should be computed. Rest assured that you are not confined to
these structured patterns; you can switch back at any time to the unstructured low-
level RDD API, although we hardly ever find a need to do so.

As well as being simpler to read, the structure of Spark’s high-level APIs also introdu‐
ces uniformity across its components and languages. For example, the Scala code
shown here does the same thing as the previous Python code—and the API looks
nearly identical:

// In Scala
import org.apache.spark.sql.functions.avg
import org.apache.spark.sql.SparkSession
// Create a DataFrame using SparkSession
val spark = SparkSession
 .builder
 .appName("AuthorsAges")
 .getOrCreate()
// Create a DataFrame of names and ages
val dataDF = spark.createDataFrame(Seq(("Brooke", 20), ("Brooke", 25),
 ("Denny", 31), ("Jules", 30), ("TD", 35))).toDF("name", "age")
// Group the same names together, aggregate their ages, and compute an average
val avgDF = dataDF.groupBy("name").agg(avg("age"))
// Show the results of the final execution

46 | Chapter 3: Apache Spark’s Structured APIs

avgDF.show()

+------+--------+
| name|avg(age)|
+------+--------+
Brooke	22.5
Jules	30.0
TD	35.0
Denny	31.0
+------+--------+

Some of these DSL operators perform relational-like operations
that you’ll be familiar with if you know SQL, such as selecting, fil‐
tering, grouping, and aggregation.

All of this simplicity and expressivity that we developers cherish is possible because of
the Spark SQL engine upon which the high-level Structured APIs are built. It is
because of this engine, which underpins all the Spark components, that we get uni‐
form APIs. Whether you express a query against a DataFrame in Structured Stream‐
ing or MLlib, you are always transforming and operating on DataFrames as
structured data. We’ll take a closer look at the Spark SQL engine later in this chapter,
but for now let’s explore those APIs and DSLs for common operations and how to use
them for data analytics.

The DataFrame API
Inspired by pandas DataFrames in structure, format, and a few specific operations,
Spark DataFrames are like distributed in-memory tables with named columns and
schemas, where each column has a specific data type: integer, string, array, map, real,
date, timestamp, etc. To a human’s eye, a Spark DataFrame is like a table. An example
is shown in Table 3-1.

Table 3-1. The table-like format of a DataFrame

Id

(Int)

First

(String)

Last

(String)

Url

(String)

Published

(Date)

Hits

(Int)

Campaigns

(List[Strings])

1 Jules Damji https://

tinyurl.1

1/4/2016 4535 [twitter, LinkedIn]

2 Brooke Wenig https://

tinyurl.2

5/5/2018 8908 [twitter, LinkedIn]

3 Denny Lee https://

tinyurl.3

6/7/2019 7659 [web, twitter, FB,

LinkedIn]

4 Tathagata Das https://

tinyurl.4

5/12/2018 10568 [twitter, FB]

The DataFrame API | 47

https://oreil.ly/z93hD

Id

(Int)

First

(String)

Last

(String)

Url

(String)

Published

(Date)

Hits

(Int)

Campaigns

(List[Strings])

5 Matei Zaharia https://

tinyurl.5

5/14/2014 40578 [web, twitter, FB,

LinkedIn]

6 Reynold Xin https://

tinyurl.6

3/2/2015 25568 [twitter, LinkedIn]

When data is visualized as a structured table, it’s not only easy to digest but also easy
to work with when it comes to common operations you might want to execute on
rows and columns. Also recall that, as you learned in Chapter 2, DataFrames are
immutable and Spark keeps a lineage of all transformations. You can add or change
the names and data types of the columns, creating new DataFrames while the previ‐
ous versions are preserved. A named column in a DataFrame and its associated Spark
data type can be declared in the schema.

Let’s examine the generic and structured data types available in Spark before we use
them to define a schema. Then we’ll illustrate how to create a DataFrame with a
schema, capturing the data in Table 3-1.

Spark’s Basic Data Types
Matching its supported programming languages, Spark supports basic internal data
types. These data types can be declared in your Spark application or defined in your
schema. For example, in Scala, you can define or declare a particular column name to
be of type String, Byte, Long, or Map, etc. Here, we define variable names tied to a
Spark data type:

$SPARK_HOME/bin/spark-shell
scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._
scala> val nameTypes = StringType
nameTypes: org.apache.spark.sql.types.StringType.type = StringType
scala> val firstName = nameTypes
firstName: org.apache.spark.sql.types.StringType.type = StringType
scala> val lastName = nameTypes
lastName: org.apache.spark.sql.types.StringType.type = StringType

Table 3-2 lists the basic Scala data types supported in Spark. They all are subtypes of
the class DataTypes, except for DecimalType.

48 | Chapter 3: Apache Spark’s Structured APIs

https://oreil.ly/_GifO

Table 3-2. Basic Scala data types in Spark

Data type Value assigned in Scala API to instantiate
ByteType Byte DataTypes.ByteType

ShortType Short DataTypes.ShortType

IntegerType Int DataTypes.IntegerType

LongType Long DataTypes.LongType

FloatType Float DataTypes.FloatType

DoubleType Double DataTypes.DoubleType

StringType String DataTypes.StringType

BooleanType Boolean DataTypes.BooleanType

DecimalType java.math.BigDecimal DecimalType

Spark supports similar basic Python data types, as enumerated in Table 3-3.

Table 3-3. Basic Python data types in Spark

Data type Value assigned in Python API to instantiate
ByteType int DataTypes.ByteType

ShortType int DataTypes.ShortType

IntegerType int DataTypes.IntegerType

LongType int DataTypes.LongType

FloatType float DataTypes.FloatType

DoubleType float DataTypes.DoubleType

StringType str DataTypes.StringType

BooleanType bool DataTypes.BooleanType

DecimalType decimal.Decimal DecimalType

Spark’s Structured and Complex Data Types
For complex data analytics, you won’t deal only with simple or basic data types. Your
data will be complex, often structured or nested, and you’ll need Spark to handle
these complex data types. They come in many forms: maps, arrays, structs, dates,
timestamps, fields, etc. Table 3-4 lists the Scala structured data types that Spark
supports.

The DataFrame API | 49

https://oreil.ly/HuREJ

Table 3-4. Scala structured data types in Spark

Data type Value assigned in Scala API to instantiate
BinaryType Array[Byte] DataTypes.BinaryType

Timestamp

Type

java.sql.Timestamp DataTypes.TimestampType

DateType java.sql.Date DataTypes.DateType

ArrayType scala.collection.Seq DataTypes.createArrayType(Element

Type)

MapType scala.collection.Map DataTypes.createMapType(keyType,

valueType)

StructType org.apache.spark.sql.Row StructType(ArrayType[fieldTypes])

StructField A value type corresponding to the type of this field StructField(name, dataType, [nulla

ble])

The equivalent structured data types in Python that Spark supports are enumerated
in Table 3-5.

Table 3-5. Python structured data types in Spark

Data type Value assigned in Python API to instantiate
BinaryType bytearray BinaryType()

TimestampType datetime.datetime TimestampType()

DateType datetime.date DateType()

ArrayType List, tuple, or array ArrayType(dataType, [nullable])

MapType dict MapType(keyType, valueType, [nul

lable])

StructType List or tuple StructType([fields])

StructField A value type corresponding to the type of this
field

StructField(name, dataType, [nul

lable])

While these tables showcase the myriad types supported, it’s far more important to
see how these types come together when you define a schema for your data.

Schemas and Creating DataFrames
A schema in Spark defines the column names and associated data types for a Data‐
Frame. Most often, schemas come into play when you are reading structured data
from an external data source (more on this in the next chapter). Defining a schema
up front as opposed to taking a schema-on-read approach offers three benefits:

50 | Chapter 3: Apache Spark’s Structured APIs

• You relieve Spark from the onus of inferring data types.
• You prevent Spark from creating a separate job just to read a large portion of

your file to ascertain the schema, which for a large data file can be expensive and
time-consuming.

• You can detect errors early if data doesn’t match the schema.

So, we encourage you to always define your schema up front whenever you want to
read a large file from a data source. For a short illustration, let’s define a schema for
the data in Table 3-1 and use that schema to create a DataFrame.

Two ways to define a schema
Spark allows you to define a schema in two ways. One is to define it programmati‐
cally, and the other is to employ a Data Definition Language (DDL) string, which is
much simpler and easier to read.

To define a schema programmatically for a DataFrame with three named columns,
author, title, and pages, you can use the Spark DataFrame API. For example:

// In Scala
import org.apache.spark.sql.types._
val schema = StructType(Array(StructField("author", StringType, false),
 StructField("title", StringType, false),
 StructField("pages", IntegerType, false)))

In Python
from pyspark.sql.types import *
schema = StructType([StructField("author", StringType(), False),
 StructField("title", StringType(), False),
 StructField("pages", IntegerType(), False)])

Defining the same schema using DDL is much simpler:

// In Scala
val schema = "author STRING, title STRING, pages INT"

In Python
schema = "author STRING, title STRING, pages INT"

You can choose whichever way you like to define a schema. For many examples, we
will use both:

In Python
from pyspark.sql import SparkSession

Define schema for our data using DDL
schema = "`Id` INT, `First` STRING, `Last` STRING, `Url` STRING,
 `Published` STRING, `Hits` INT, `Campaigns` ARRAY<STRING>"

Create our static data
data = [[1, "Jules", "Damji", "https://tinyurl.1", "1/4/2016", 4535, ["twitter",

The DataFrame API | 51

"LinkedIn"]],
 [2, "Brooke","Wenig", "https://tinyurl.2", "5/5/2018", 8908, ["twitter",
"LinkedIn"]],
 [3, "Denny", "Lee", "https://tinyurl.3", "6/7/2019", 7659, ["web",
"twitter", "FB", "LinkedIn"]],
 [4, "Tathagata", "Das", "https://tinyurl.4", "5/12/2018", 10568,
["twitter", "FB"]],
 [5, "Matei","Zaharia", "https://tinyurl.5", "5/14/2014", 40578, ["web",
"twitter", "FB", "LinkedIn"]],
 [6, "Reynold", "Xin", "https://tinyurl.6", "3/2/2015", 25568,
["twitter", "LinkedIn"]]
]

Main program
if __name__ == "__main__":
 # Create a SparkSession
 spark = (SparkSession
 .builder
 .appName("Example-3_6")
 .getOrCreate())
 # Create a DataFrame using the schema defined above
 blogs_df = spark.createDataFrame(data, schema)
 # Show the DataFrame; it should reflect our table above
 blogs_df.show()
 # Print the schema used by Spark to process the DataFrame
 print(blogs_df.printSchema())

Running this program from the console will produce the following output:

$ spark-submit Example-3_6.py
...
+-------+---------+-------+-----------------+---------+-----+------------------+
|Id |First |Last |Url |Published|Hits |Campaigns |
+-------+---------+-------+-----------------+---------+-----+------------------+
1	Jules	Damji	https://tinyurl.1	1/4/2016	4535	[twitter,...]
2	Brooke	Wenig	https://tinyurl.2	5/5/2018	8908	[twitter,...]
3	Denny	Lee	https://tinyurl.3	6/7/2019	7659	[web, twitter...]
4	Tathagata	Das	https://tinyurl.4	5/12/2018	10568	[twitter, FB]
5	Matei	Zaharia	https://tinyurl.5	5/14/2014	40578	[web, twitter,...]
6	Reynold	Xin	https://tinyurl.6	3/2/2015	25568	[twitter,...]
+-------+---------+-------+-----------------+---------+-----+------------------+

root
 |-- Id: integer (nullable = false)
 |-- First: string (nullable = false)
 |-- Last: string (nullable = false)
 |-- Url: string (nullable = false)
 |-- Published: string (nullable = false)
 |-- Hits: integer (nullable = false)
 |-- Campaigns: array (nullable = false)
 | |-- element: string (containsNull = false)

52 | Chapter 3: Apache Spark’s Structured APIs

If you want to use this schema elsewhere in your code, simply execute
blogs_df.schema and it will return the schema definition:

StructType(List(StructField("Id",IntegerType,false),
StructField("First",StringType,false),
StructField("Last",StringType,false),
StructField("Url",StringType,false),
StructField("Published",StringType,false),
StructField("Hits",IntegerType,false),
StructField("Campaigns",ArrayType(StringType,true),false)))

As you can observe, the DataFrame layout matches that of Table 3-1 along with the
respective data types and schema output.

If you were to read the data from a JSON file instead of creating static data, the
schema definition would be identical. Let’s illustrate the same code with a Scala exam‐
ple, this time reading from a JSON file:

// In Scala
package main.scala.chapter3

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types._

object Example3_7 {
 def main(args: Array[String]) {

 val spark = SparkSession
 .builder
 .appName("Example-3_7")
 .getOrCreate()

 if (args.length <= 0) {
 println("usage Example3_7 <file path to blogs.json>")
 System.exit(1)
 }
 // Get the path to the JSON file
 val jsonFile = args(0)
 // Define our schema programmatically
 val schema = StructType(Array(StructField("Id", IntegerType, false),
 StructField("First", StringType, false),
 StructField("Last", StringType, false),
 StructField("Url", StringType, false),
 StructField("Published", StringType, false),
 StructField("Hits", IntegerType, false),
 StructField("Campaigns", ArrayType(StringType), false)))

 // Create a DataFrame by reading from the JSON file
 // with a predefined schema
 val blogsDF = spark.read.schema(schema).json(jsonFile)
 // Show the DataFrame schema as output
 blogsDF.show(false)

The DataFrame API | 53

 // Print the schema
 println(blogsDF.printSchema)
 println(blogsDF.schema)
 }
}

Not surprisingly, the output from the Scala program is no different than that from the
Python program:

+---+---------+-------+-----------------+---------+-----+----------------------+
|Id |First |Last |Url |Published|Hits |Campaigns |
+---+---------+-------+-----------------+---------+-----+----------------------+
1	Jules	Damji	https://tinyurl.1	1/4/2016	4535	[twitter, LinkedIn]
2	Brooke	Wenig	https://tinyurl.2	5/5/2018	8908	[twitter, LinkedIn]
3	Denny	Lee	https://tinyurl.3	6/7/2019	7659	[web, twitter,...]
4	Tathagata	Das	https://tinyurl.4	5/12/2018	10568	[twitter, FB]
5	Matei	Zaharia	https://tinyurl.5	5/14/2014	40578	[web, twitter, FB,...]
6	Reynold	Xin	https://tinyurl.6	3/2/2015	25568	[twitter, LinkedIn]
+---+---------+-------+-----------------+---------+-----+----------------------+

root
 |-- Id: integer (nullable = true)
 |-- First: string (nullable = true)
 |-- Last: string (nullable = true)
 |-- Url: string (nullable = true)
 |-- Published: string (nullable = true)
 |-- Hits: integer (nullable = true)
 |-- Campaigns: array (nullable = true)
 | |-- element: string (containsNull = true)

StructType(StructField("Id",IntegerType,true),
 StructField("First",StringType,true),
 StructField("Last",StringType,true),
 StructField("Url",StringType,true),
 StructField("Published",StringType,true),
 StructField("Hits",IntegerType,true),
 StructField("Campaigns",ArrayType(StringType,true),true))

Now that you have an idea of how to use structured data and schemas in DataFrames,
let’s focus on DataFrame columns and rows and what it means to operate on them
with the DataFrame API.

Columns and Expressions
As mentioned previously, named columns in DataFrames are conceptually similar to
named columns in pandas or R DataFrames or in an RDBMS table: they describe a
type of field. You can list all the columns by their names, and you can perform opera‐
tions on their values using relational or computational expressions. In Spark’s sup‐
ported languages, columns are objects with public methods (represented by the
Column type).

54 | Chapter 3: Apache Spark’s Structured APIs

You can also use logical or mathematical expressions on columns. For example, you
could create a simple expression using expr("columnName * 5") or (expr("colum
nName - 5") > col(anothercolumnName)), where columnName is a Spark type (inte‐
ger, string, etc.). expr() is part of the pyspark.sql.functions (Python) and
org.apache.spark.sql.functions (Scala) packages. Like any other function in those
packages, expr() takes arguments that Spark will parse as an expression, computing
the result.

Scala, Java, and Python all have public methods associated with col‐
umns. You’ll note that the Spark documentation refers to both col
and Column. Column is the name of the object, while col() is a stan‐
dard built-in function that returns a Column.

Let’s take a look at some examples of what we can do with columns in Spark. Each
example is followed by its output:

// In Scala
scala> import org.apache.spark.sql.functions._
scala> blogsDF.columns
res2: Array[String] = Array(Campaigns, First, Hits, Id, Last, Published, Url)

// Access a particular column with col and it returns a Column type
scala> blogsDF.col("Id")
res3: org.apache.spark.sql.Column = id

// Use an expression to compute a value
scala> blogsDF.select(expr("Hits * 2")).show(2)
// or use col to compute value
scala> blogsDF.select(col("Hits") * 2).show(2)

+----------+
|(Hits * 2)|
+----------+
| 9070|
| 17816|
+----------+

// Use an expression to compute big hitters for blogs
// This adds a new column, Big Hitters, based on the conditional expression
blogsDF.withColumn("Big Hitters", (expr("Hits > 10000"))).show()

+---+---------+-------+---+---------+-----+--------------------+-----------+
| Id| First| Last|Url|Published| Hits| Campaigns|Big Hitters|
+---+---------+-------+---+---------+-----+--------------------+-----------+
1	Jules	Damji	...	1/4/2016	4535	[twitter, LinkedIn]	false
2	Brooke	Wenig	...	5/5/2018	8908	[twitter, LinkedIn]	false
3	Denny	Lee	...	6/7/2019	7659	[web, twitter, FB...	false
4	Tathagata	Das	...	5/12/2018	10568	[twitter, FB]	true

The DataFrame API | 55

https://oreil.ly/xVBIX
https://oreil.ly/xVBIX

| 5| Matei|Zaharia|...|5/14/2014|40578|[web, twitter, FB...| true|
| 6| Reynold| Xin|...| 3/2/2015|25568| [twitter, LinkedIn]| true|
+---+---------+-------+---+---------+-----+--------------------+-----------+

// Concatenate three columns, create a new column, and show the
// newly created concatenated column
blogsDF
 .withColumn("AuthorsId", (concat(expr("First"), expr("Last"), expr("Id"))))
 .select(col("AuthorsId"))
 .show(4)

+-------------+
| AuthorsId|
+-------------+
| JulesDamji1|
| BrookeWenig2|
| DennyLee3|
|TathagataDas4|
+-------------+

// These statements return the same value, showing that
// expr is the same as a col method call
blogsDF.select(expr("Hits")).show(2)
blogsDF.select(col("Hits")).show(2)
blogsDF.select("Hits").show(2)

+-----+
| Hits|
+-----+
| 4535|
| 8908|
+-----+

// Sort by column "Id" in descending order
blogsDF.sort(col("Id").desc).show()
blogsDF.sort($"Id".desc).show()

+--------------------+---------+-----+---+-------+---------+-----------------+
| Campaigns| First| Hits| Id| Last|Published| Url|
+--------------------+---------+-----+---+-------+---------+-----------------+
[twitter, LinkedIn]	Reynold	25568	6	Xin	3/2/2015	https://tinyurl.6
[web, twitter, FB...	Matei	40578	5	Zaharia	5/14/2014	https://tinyurl.5
[twitter, FB]	Tathagata	10568	4	Das	5/12/2018	https://tinyurl.4
[web, twitter, FB...	Denny	7659	3	Lee	6/7/2019	https://tinyurl.3
[twitter, LinkedIn]	Brooke	8908	2	Wenig	5/5/2018	https://tinyurl.2
[twitter, LinkedIn]	Jules	4535	1	Damji	1/4/2016	https://tinyurl.1
+--------------------+---------+-----+---+-------+---------+-----------------+

In this last example, the expressions blogs_df.sort(col("Id").desc) and
blogsDF.sort($"Id".desc) are identical. They both sort the DataFrame column
named Id in descending order: one uses an explicit function, col("Id"), to return a

56 | Chapter 3: Apache Spark’s Structured APIs

Column object, while the other uses $ before the name of the column, which is a func‐
tion in Spark that converts column named Id to a Column.

We have only scratched the surface here, and employed just a cou‐
ple of methods on Column objects. For a complete list of all public
methods for Column objects, we refer you to the Spark documenta‐
tion.

Column objects in a DataFrame can’t exist in isolation; each column is part of a row in
a record and all the rows together constitute a DataFrame, which as we will see later
in the chapter is really a Dataset[Row] in Scala.

Rows
A row in Spark is a generic Row object, containing one or more columns. Each col‐
umn may be of the same data type (e.g., integer or string), or they can have different
types (integer, string, map, array, etc.). Because Row is an object in Spark and an
ordered collection of fields, you can instantiate a Row in each of Spark’s supported lan‐
guages and access its fields by an index starting at 0:

// In Scala
import org.apache.spark.sql.Row
// Create a Row
val blogRow = Row(6, "Reynold", "Xin", "https://tinyurl.6", 255568, "3/2/2015",
 Array("twitter", "LinkedIn"))
// Access using index for individual items
blogRow(1)
res62: Any = Reynold

In Python
from pyspark.sql import Row
blog_row = Row(6, "Reynold", "Xin", "https://tinyurl.6", 255568, "3/2/2015",
 ["twitter", "LinkedIn"])
access using index for individual items
blog_row[1]
'Reynold'

Row objects can be used to create DataFrames if you need them for quick interactivity
and exploration:

In Python
rows = [Row("Matei Zaharia", "CA"), Row("Reynold Xin", "CA")]
authors_df = spark.createDataFrame(rows, ["Authors", "State"])
authors_df.show()

// In Scala
val rows = Seq(("Matei Zaharia", "CA"), ("Reynold Xin", "CA"))
val authorsDF = rows.toDF("Author", "State")
authorsDF.show()

The DataFrame API | 57

https://oreil.ly/TZd3c
https://oreil.ly/TZd3c
https://oreil.ly/YLMnw

1 This public data is available at https://oreil.ly/iDzQK.
2 The original data set has over 60 columns. We dropped a few unnecessary columns, removed records with

null or invalid values, and added an extra Delay column.

+-------------+-----+
| Author|State|
+-------------+-----+
|Matei Zaharia| CA|
| Reynold Xin| CA|
+-------------+-----+

In practice, though, you will usually want to read DataFrames from a file as illustrated
earlier. In most cases, because your files are going to be huge, defining a schema and
using it is a quicker and more efficient way to create DataFrames.

After you have created a large distributed DataFrame, you are going to want to per‐
form some common data operations on it. Let’s examine some of the Spark opera‐
tions you can perform with high-level relational operators in the Structured APIs.

Common DataFrame Operations
To perform common data operations on DataFrames, you’ll first need to load a Data‐
Frame from a data source that holds your structured data. Spark provides an inter‐
face, DataFrameReader, that enables you to read data into a DataFrame from myriad
data sources in formats such as JSON, CSV, Parquet, Text, Avro, ORC, etc. Likewise,
to write a DataFrame back to a data source in a particular format, Spark uses
DataFrameWriter.

Using DataFrameReader and DataFrameWriter
Reading and writing are simple in Spark because of these high-level abstractions and
contributions from the community to connect to a wide variety of data sources,
including common NoSQL stores, RDBMSs, streaming engines such as Apache Kafka
and Kinesis, and more.

To get started, let’s read a large CSV file containing data on San Francisco Fire
Department calls.1 As noted previously, we will define a schema for this file and use
the DataFrameReader class and its methods to tell Spark what to do. Because this file
contains 28 columns and over 4,380,660 records,2 it’s more efficient to define a
schema than have Spark infer it.

58 | Chapter 3: Apache Spark’s Structured APIs

https://oreil.ly/iDzQK
https://oreil.ly/v3WLZ
https://oreil.ly/vzjau

If you don’t want to specify the schema, Spark can infer schema
from a sample at a lesser cost. For example, you can use the
samplingRatio option:

// In Scala
val sampleDF = spark
 .read
 .option("samplingRatio", 0.001)
 .option("header", true)
 .csv("""/databricks-datasets/learning-spark-v2/
 sf-fire/sf-fire-calls.csv""")

Let’s take a look at how to do this:

In Python, define a schema
from pyspark.sql.types import *

Programmatic way to define a schema
fire_schema = StructType([StructField('CallNumber', IntegerType(), True),
 StructField('UnitID', StringType(), True),
 StructField('IncidentNumber', IntegerType(), True),
 StructField('CallType', StringType(), True),
 StructField('CallDate', StringType(), True),
 StructField('WatchDate', StringType(), True),
 StructField('CallFinalDisposition', StringType(), True),
 StructField('AvailableDtTm', StringType(), True),
 StructField('Address', StringType(), True),
 StructField('City', StringType(), True),
 StructField('Zipcode', IntegerType(), True),
 StructField('Battalion', StringType(), True),
 StructField('StationArea', StringType(), True),
 StructField('Box', StringType(), True),
 StructField('OriginalPriority', StringType(), True),
 StructField('Priority', StringType(), True),
 StructField('FinalPriority', IntegerType(), True),
 StructField('ALSUnit', BooleanType(), True),
 StructField('CallTypeGroup', StringType(), True),
 StructField('NumAlarms', IntegerType(), True),
 StructField('UnitType', StringType(), True),
 StructField('UnitSequenceInCallDispatch', IntegerType(), True),
 StructField('FirePreventionDistrict', StringType(), True),
 StructField('SupervisorDistrict', StringType(), True),
 StructField('Neighborhood', StringType(), True),
 StructField('Location', StringType(), True),
 StructField('RowID', StringType(), True),
 StructField('Delay', FloatType(), True)])

Use the DataFrameReader interface to read a CSV file
sf_fire_file = "/databricks-datasets/learning-spark-v2/sf-fire/sf-fire-calls.csv"
fire_df = spark.read.csv(sf_fire_file, header=True, schema=fire_schema)

// In Scala it would be similar
val fireSchema = StructType(Array(StructField("CallNumber", IntegerType, true),

The DataFrame API | 59

 StructField("UnitID", StringType, true),
 StructField("IncidentNumber", IntegerType, true),
 StructField("CallType", StringType, true),
 StructField("Location", StringType, true),
 ...
 ...
 StructField("Delay", FloatType, true)))

// Read the file using the CSV DataFrameReader
val sfFireFile="/databricks-datasets/learning-spark-v2/sf-fire/sf-fire-calls.csv"
val fireDF = spark.read.schema(fireSchema)
 .option("header", "true")
 .csv(sfFireFile)

The spark.read.csv() function reads in the CSV file and returns a DataFrame of
rows and named columns with the types dictated in the schema.

To write the DataFrame into an external data source in your format of choice, you
can use the DataFrameWriter interface. Like DataFrameReader, it supports multiple
data sources. Parquet, a popular columnar format, is the default format; it uses
snappy compression to compress the data. If the DataFrame is written as Parquet, the
schema is preserved as part of the Parquet metadata. In this case, subsequent reads
back into a DataFrame do not require you to manually supply a schema.

Saving a DataFrame as a Parquet file or SQL table. A common data operation is to explore
and transform your data, and then persist the DataFrame in Parquet format or save it
as a SQL table. Persisting a transformed DataFrame is as easy as reading it. For exam‐
ple, to persist the DataFrame we were just working with as a file after reading it you
would do the following:

// In Scala to save as a Parquet file
val parquetPath = ...
fireDF.write.format("parquet").save(parquetPath)

In Python to save as a Parquet file
parquet_path = ...
fire_df.write.format("parquet").save(parquet_path)

Alternatively, you can save it as a table, which registers metadata with the Hive meta‐
store (we will cover SQL managed and unmanaged tables, metastores, and Data‐
Frames in the next chapter):

// In Scala to save as a table
val parquetTable = ... // name of the table
fireDF.write.format("parquet").saveAsTable(parquetTable)

In Python
parquet_table = ... # name of the table
fire_df.write.format("parquet").saveAsTable(parquet_table)

60 | Chapter 3: Apache Spark’s Structured APIs

https://oreil.ly/4rYNZ
https://oreil.ly/4rYNZ

Let’s walk through some common operations to perform on DataFrames after you
have read the data.

Transformations and actions
Now that you have a distributed DataFrame composed of San Francisco Fire Depart‐
ment calls in memory, the first thing you as a developer will want to do is examine
your data to see what the columns look like. Are they of the correct types? Do any of
them need to be converted to different types? Do they have null values?

In “Transformations, Actions, and Lazy Evaluation” on page 28 in Chapter 2, you got
a glimpse of how transformations and actions are used to operate on DataFrames,
and saw some common examples of each. What can we find out from our San Fran‐
cisco Fire Department calls using these?

Projections and filters. A projection in relational parlance is a way to return only the
rows matching a certain relational condition by using filters. In Spark, projections are
done with the select() method, while filters can be expressed using the filter() or
where() method. We can use this technique to examine specific aspects of our SF Fire
Department data set:

In Python
few_fire_df = (fire_df
 .select("IncidentNumber", "AvailableDtTm", "CallType")
 .where(col("CallType") != "Medical Incident"))
few_fire_df.show(5, truncate=False)

// In Scala
val fewFireDF = fireDF
 .select("IncidentNumber", "AvailableDtTm", "CallType")
 .where($"CallType" =!= "Medical Incident")
fewFireDF.show(5, false)

+--------------+----------------------+--------------+
|IncidentNumber|AvailableDtTm |CallType |
+--------------+----------------------+--------------+
2003235	01/11/2002 01:47:00 AM	Structure Fire
2003235	01/11/2002 01:51:54 AM	Structure Fire
2003235	01/11/2002 01:47:00 AM	Structure Fire
2003235	01/11/2002 01:47:00 AM	Structure Fire
2003235	01/11/2002 01:51:17 AM	Structure Fire
+--------------+----------------------+--------------+
only showing top 5 rows

What if we want to know how many distinct CallTypes were recorded as the causes
of the fire calls? These simple and expressive queries do the job:

In Python, return number of distinct types of calls using countDistinct()
from pyspark.sql.functions import *
(fire_df

The DataFrame API | 61

 .select("CallType")
 .where(col("CallType").isNotNull())
 .agg(countDistinct("CallType").alias("DistinctCallTypes"))
 .show())

// In Scala
import org.apache.spark.sql.functions._
fireDF
 .select("CallType")
 .where(col("CallType").isNotNull)
 .agg(countDistinct('CallType) as 'DistinctCallTypes)
 .show()

+-----------------+
|DistinctCallTypes|
+-----------------+
| 32|
+-----------------+

We can list the distinct call types in the data set using these queries:

In Python, filter for only distinct non-null CallTypes from all the rows
(fire_df
 .select("CallType")
 .where(col("CallType").isNotNull())
 .distinct()
 .show(10, False))

// In Scala
fireDF
 .select("CallType")
 .where($"CallType".isNotNull())
 .distinct()
 .show(10, false)

Out[20]: 32

+-----------------------------------+
|CallType |
+-----------------------------------+
|Elevator / Escalator Rescue |
|Marine Fire |
|Aircraft Emergency |
|Confined Space / Structure Collapse|
|Administrative |
|Alarms |
|Odor (Strange / Unknown) |
|Lightning Strike (Investigation) |
|Citizen Assist / Service Call |
|HazMat |
+-----------------------------------+
only showing top 10 rows

62 | Chapter 3: Apache Spark’s Structured APIs

Renaming, adding, and dropping columns. Sometimes you want to rename particular
columns for reasons of style or convention, and at other times for readability or brev‐
ity. The original column names in the SF Fire Department data set had spaces in
them. For example, the column name IncidentNumber was Incident Number. Spaces
in column names can be problematic, especially when you want to write or save a
DataFrame as a Parquet file (which prohibits this).

By specifying the desired column names in the schema with StructField, as we did,
we effectively changed all names in the resulting DataFrame.

Alternatively, you could selectively rename columns with the withColumnRenamed()
method. For instance, let’s change the name of our Delay column to ResponseDe
layedinMins and take a look at the response times that were longer than five
minutes:

In Python
new_fire_df = fire_df.withColumnRenamed("Delay", "ResponseDelayedinMins")
(new_fire_df
 .select("ResponseDelayedinMins")
 .where(col("ResponseDelayedinMins") > 5)
 .show(5, False))

// In Scala
val newFireDF = fireDF.withColumnRenamed("Delay", "ResponseDelayedinMins")
newFireDF
 .select("ResponseDelayedinMins")
 .where($"ResponseDelayedinMins" > 5)
 .show(5, false)

This gives us a new renamed column:

+---------------------+
|ResponseDelayedinMins|
+---------------------+
|5.233333 |
|6.9333334 |
|6.116667 |
|7.85 |
|77.333336 |
+---------------------+
only showing top 5 rows

Because DataFrame transformations are immutable, when we
rename a column using withColumnRenamed() we get a new Data‐
Frame while retaining the original with the old column name.

Modifying the contents of a column or its type are common operations during data
exploration. In some cases the data is raw or dirty, or its types are not amenable to

The DataFrame API | 63

being supplied as arguments to relational operators. For example, in our SF Fire
Department data set, the columns CallDate, WatchDate, and AlarmDtTm are strings
rather than either Unix timestamps or SQL dates, both of which Spark supports and
can easily manipulate during transformations or actions (e.g., during a date- or time-
based analysis of the data).

So how do we convert them into a more usable format? It’s quite simple, thanks to
some high-level API methods. spark.sql.functions has a set of to/from date/time‐
stamp functions such as to_timestamp() and to_date() that we can use for just this
purpose:

In Python
fire_ts_df = (new_fire_df
 .withColumn("IncidentDate", to_timestamp(col("CallDate"), "MM/dd/yyyy"))
 .drop("CallDate")
 .withColumn("OnWatchDate", to_timestamp(col("WatchDate"), "MM/dd/yyyy"))
 .drop("WatchDate")
 .withColumn("AvailableDtTS", to_timestamp(col("AvailableDtTm"),
 "MM/dd/yyyy hh:mm:ss a"))
 .drop("AvailableDtTm"))

Select the converted columns
(fire_ts_df
 .select("IncidentDate", "OnWatchDate", "AvailableDtTS")
 .show(5, False))

// In Scala
val fireTsDF = newFireDF
 .withColumn("IncidentDate", to_timestamp(col("CallDate"), "MM/dd/yyyy"))
 .drop("CallDate")
 .withColumn("OnWatchDate", to_timestamp(col("WatchDate"), "MM/dd/yyyy"))
 .drop("WatchDate")
 .withColumn("AvailableDtTS", to_timestamp(col("AvailableDtTm"),
 "MM/dd/yyyy hh:mm:ss a"))
 .drop("AvailableDtTm")

// Select the converted columns
fireTsDF
 .select("IncidentDate", "OnWatchDate", "AvailableDtTS")
 .show(5, false)

Those queries pack quite a punch—a number of things are happening. Let’s unpack
what they do:

64 | Chapter 3: Apache Spark’s Structured APIs

1. Convert the existing column’s data type from string to a Spark-supported
timestamp.

2. Use the new format specified in the format string "MM/dd/yyyy" or "MM/dd/yyyy
hh:mm:ss a" where appropriate.

3. After converting to the new data type, drop() the old column and append the
new one specified in the first argument to the withColumn() method.

4. Assign the new modified DataFrame to fire_ts_df.

The queries result in three new columns:

+-------------------+-------------------+-------------------+
|IncidentDate |OnWatchDate |AvailableDtTS |
+-------------------+-------------------+-------------------+
2002-01-11 00:00:00	2002-01-10 00:00:00	2002-01-11 01:58:43
2002-01-11 00:00:00	2002-01-10 00:00:00	2002-01-11 02:10:17
2002-01-11 00:00:00	2002-01-10 00:00:00	2002-01-11 01:47:00
2002-01-11 00:00:00	2002-01-10 00:00:00	2002-01-11 01:51:54
2002-01-11 00:00:00	2002-01-10 00:00:00	2002-01-11 01:47:00
+-------------------+-------------------+-------------------+
only showing top 5 rows

Now that we have modified the dates, we can query using functions from
spark.sql.functions like month(), year(), and day() to explore our data further.
We could find out how many calls were logged in the last seven days, or we could see
how many years’ worth of Fire Department calls are included in the data set with this
query:

In Python
(fire_ts_df
 .select(year('IncidentDate'))
 .distinct()
 .orderBy(year('IncidentDate'))
 .show())

// In Scala
fireTsDF
 .select(year($"IncidentDate"))
 .distinct()
 .orderBy(year($"IncidentDate"))
 .show()
+------------------+
|year(IncidentDate)|
+------------------+
| 2000|
| 2001|
| 2002|
| 2003|
| 2004|
| 2005|

The DataFrame API | 65

| 2006|
| 2007|
| 2008|
| 2009|
| 2010|
| 2011|
| 2012|
| 2013|
| 2014|
| 2015|
| 2016|
| 2017|
| 2018|
+------------------+

So far in this section, we have explored a number of common data operations: read‐
ing and writing DataFrames; defining a schema and using it when reading in a Data‐
Frame; saving a DataFrame as a Parquet file or table; projecting and filtering selected
columns from an existing DataFrame; and modifying, renaming, and dropping
columns.

One final common operation is grouping data by values in a column and aggregating
the data in some way, like simply counting it. This pattern of grouping and counting
is as common as projecting and filtering. Let’s have a go at it.

Aggregations. What if we want to know what the most common types of fire calls
were, or what zip codes accounted for the most calls? These kinds of questions are
common in data analysis and exploration.

A handful of transformations and actions on DataFrames, such as groupBy(),
orderBy(), and count(), offer the ability to aggregate by column names and then
aggregate counts across them.

For larger DataFrames on which you plan to conduct frequent or
repeated queries, you could benefit from caching. We will cover
DataFrame caching strategies and their benefits in later chapters.

Let’s take our first question: what were the most common types of fire calls?

In Python
(fire_ts_df
 .select("CallType")
 .where(col("CallType").isNotNull())
 .groupBy("CallType")
 .count()
 .orderBy("count", ascending=False)
 .show(n=10, truncate=False))

66 | Chapter 3: Apache Spark’s Structured APIs

// In Scala
fireTsDF
 .select("CallType")
 .where(col("CallType").isNotNull)
 .groupBy("CallType")
 .count()
 .orderBy(desc("count"))
 .show(10, false)

+-------------------------------+-------+
|CallType |count |
+-------------------------------+-------+
Medical Incident	2843475
Structure Fire	578998
Alarms	483518
Traffic Collision	175507
Citizen Assist / Service Call	65360
Other	56961
Outside Fire	51603
Vehicle Fire	20939
Water Rescue	20037
Gas Leak (Natural and LP Gases)	17284
+-------------------------------+-------+

From this output we can conclude that the most common call type is Medical
Incident.

The DataFrame API also offers the collect() method, but for
extremely large DataFrames this is resource-heavy (expensive) and
dangerous, as it can cause out-of-memory (OOM) exceptions.
Unlike count(), which returns a single number to the driver, col
lect() returns a collection of all the Row objects in the entire Data‐
Frame or Dataset. If you want to take a peek at some Row records
you’re better off with take(n), which will return only the first n
Row objects of the DataFrame.

Other common DataFrame operations. Along with all the others we’ve seen, the Data‐
Frame API provides descriptive statistical methods like min(), max(), sum(), and
avg(). Let’s take a look at some examples showing how to compute them with our SF
Fire Department data set.

Here we compute the sum of alarms, the average response time, and the minimum
and maximum response times to all fire calls in our data set, importing the PySpark
functions in a Pythonic way so as not to conflict with the built-in Python functions:

In Python
import pyspark.sql.functions as F
(fire_ts_df
 .select(F.sum("NumAlarms"), F.avg("ResponseDelayedinMins"),

The DataFrame API | 67

 F.min("ResponseDelayedinMins"), F.max("ResponseDelayedinMins"))
 .show())

// In Scala
import org.apache.spark.sql.{functions => F}
fireTsDF
 .select(F.sum("NumAlarms"), F.avg("ResponseDelayedinMins"),
 F.min("ResponseDelayedinMins"), F.max("ResponseDelayedinMins"))
 .show()

+--------------+--------------------------+--------------------------+---------+
|sum(NumAlarms)|avg(ResponseDelayedinMins)|min(ResponseDelayedinMins)|max(...) |
+--------------+--------------------------+--------------------------+---------+
| 4403441| 3.902170335891614| 0.016666668|1879.6167|
+--------------+--------------------------+--------------------------+---------+

For more advanced statistical needs common with data science workloads, read the
API documentation for methods like stat(), describe(), correlation(),
covariance(), sampleBy(), approxQuantile(), frequentItems(), and so on.

As you can see, it’s easy to compose and chain expressive queries with DataFrames’
high-level API and DSL operators. We can’t imagine the opacity and comparative
unreadability of the code if we were to try to do the same with RDDs!

End-to-End DataFrame Example
There are many possibilities for exploratory data analysis, ETL, and common data
operations on the San Francisco Fire Department public data set, above and beyond
what we’ve shown here.

For brevity we won’t include all the example code here, but the book’s GitHub repo
provides Python and Scala notebooks for you to try to complete an end-to-end Data‐
Frame example using this data set. The notebooks explore and answer the following
common questions that you might ask, using the DataFrame API and DSL relational
operators:

• What were all the different types of fire calls in 2018?
• What months within the year 2018 saw the highest number of fire calls?
• Which neighborhood in San Francisco generated the most fire calls in 2018?
• Which neighborhoods had the worst response times to fire calls in 2018?
• Which week in the year in 2018 had the most fire calls?
• Is there a correlation between neighborhood, zip code, and number of fire calls?
• How can we use Parquet files or SQL tables to store this data and read it back?

68 | Chapter 3: Apache Spark’s Structured APIs

https://github.com/databricks/LearningSparkV2

So far we have extensively discussed the DataFrame API, one of the Structured APIs
that span Spark’s MLlib and Structured Streaming components, which we cover later
in the book.

Next, we’ll shift our focus to the Dataset API and explore how the two APIs provide a
unified, structured interface to developers for programming Spark. We’ll then exam‐
ine the relationship between the RDD, DataFrame, and Dataset APIs, and help you
determine when to use which API and why.

The Dataset API
As stated earlier in this chapter, Spark 2.0 unified the DataFrame and Dataset APIs as
Structured APIs with similar interfaces so that developers would only have to learn a
single set of APIs. Datasets take on two characteristics: typed and untyped APIs, as
shown in Figure 3-1.

Figure 3-1. Structured APIs in Apache Spark

Conceptually, you can think of a DataFrame in Scala as an alias for a collection of
generic objects, Dataset[Row], where a Row is a generic untyped JVM object that may
hold different types of fields. A Dataset, by contrast, is a collection of strongly typed
JVM objects in Scala or a class in Java. Or, as the Dataset documentation puts it, a
Dataset is:

a strongly typed collection of domain-specific objects that can be transformed in paral‐
lel using functional or relational operations. Each Dataset [in Scala] also has an unty‐
ped view called a DataFrame, which is a Dataset of Row.

Typed Objects, Untyped Objects, and Generic Rows
In Spark’s supported languages, Datasets make sense only in Java and Scala, whereas
in Python and R only DataFrames make sense. This is because Python and R are not
compile-time type-safe; types are dynamically inferred or assigned during execution,
not during compile time. The reverse is true in Scala and Java: types are bound to

The Dataset API | 69

https://oreil.ly/t3RGF
https://oreil.ly/_3quT
https://oreil.ly/wSkcJ

variables and objects at compile time. In Scala, however, a DataFrame is just an alias
for untyped Dataset[Row]. Table 3-6 distills it in a nutshell.

Table 3-6. Typed and untyped objects in Spark

Language Typed and untyped main abstraction Typed or untyped
Scala Dataset[T] and DataFrame (alias for Dataset[Row]) Both typed and untyped
Java Dataset<T> Typed
Python DataFrame Generic Row untyped
R DataFrame Generic Row untyped

Row is a generic object type in Spark, holding a collection of mixed types that can be
accessed using an index. Internally, Spark manipulates Row objects, converting them
to the equivalent types covered in Table 3-2 and Table 3-3. For example, an Int as one
of your fields in a Row will be mapped or converted to IntegerType or IntegerType()
respectively for Scala or Java and Python:

// In Scala
import org.apache.spark.sql.Row
val row = Row(350, true, "Learning Spark 2E", null)

In Python
from pyspark.sql import Row
row = Row(350, True, "Learning Spark 2E", None)

Using an index into the Row object, you can access individual fields with its public
getter methods:

// In Scala
row.getInt(0)
res23: Int = 350
row.getBoolean(1)
res24: Boolean = true
row.getString(2)
res25: String = Learning Spark 2E

In Python
row[0]
Out[13]: 350
row[1]
Out[14]: True
row[2]
Out[15]: 'Learning Spark 2E'

By contrast, typed objects are actual Java or Scala class objects in the JVM. Each ele‐
ment in a Dataset maps to a JVM object.

70 | Chapter 3: Apache Spark’s Structured APIs

Creating Datasets
As with creating DataFrames from data sources, when creating a Dataset you have to
know the schema. In other words, you need to know the data types. Although with
JSON and CSV data it’s possible to infer the schema, for large data sets this is
resource-intensive (expensive). When creating a Dataset in Scala, the easiest way to
specify the schema for the resulting Dataset is to use a case class. In Java, JavaBean
classes are used (we further discuss JavaBean and Scala case class in Chapter 6).

Scala: Case classes
When you wish to instantiate your own domain-specific object as a Dataset, you can
do so by defining a case class in Scala. As an example, let’s look at a collection of read‐
ings from Internet of Things (IoT) devices in a JSON file (we use this file in the end-
to-end example later in this section).

Our file has rows of JSON strings that look as follows:

{"device_id": 198164, "device_name": "sensor-pad-198164owomcJZ", "ip":
"80.55.20.25", "cca2": "PL", "cca3": "POL", "cn": "Poland", "latitude":
53.080000, "longitude": 18.620000, "scale": "Celsius", "temp": 21,
"humidity": 65, "battery_level": 8, "c02_level": 1408,"lcd": "red",
"timestamp" :1458081226051}

To express each JSON entry as DeviceIoTData, a domain-specific object, we can
define a Scala case class:

case class DeviceIoTData (battery_level: Long, c02_level: Long,
cca2: String, cca3: String, cn: String, device_id: Long,
device_name: String, humidity: Long, ip: String, latitude: Double,
lcd: String, longitude: Double, scale:String, temp: Long,
timestamp: Long)

Once defined, we can use it to read our file and convert the returned Dataset[Row]
into Dataset[DeviceIoTData] (output truncated to fit on the page):

// In Scala
val ds = spark.read
 .json("/databricks-datasets/learning-spark-v2/iot-devices/iot_devices.json")
 .as[DeviceIoTData]

ds: org.apache.spark.sql.Dataset[DeviceIoTData] = [battery_level...]

ds.show(5, false)

+-------------|---------|----|----|-------------|---------|---+
|battery_level|c02_level|cca2|cca3|cn |device_id|...|
+-------------|---------|----|----|-------------|---------|---+
8	868	US	USA	United States	1	...
7	1473	NO	NOR	Norway	2	...
2	1556	IT	ITA	Italy	3	...

The Dataset API | 71

|6 |1080 |US |USA |United States|4 |...|
|4 |931 |PH |PHL |Philippines |5 |...|
+-------------|---------|----|----|-------------|---------|---+
only showing top 5 rows

Dataset Operations
Just as you can perform transformations and actions on DataFrames, so you can with
Datasets. Depending on the kind of operation, the results will vary:

// In Scala
val filterTempDS = ds.filter({d => {d.temp > 30 && d.humidity > 70})

filterTempDS: org.apache.spark.sql.Dataset[DeviceIoTData] = [battery_level...]

filterTempDS.show(5, false)

+-------------|---------|----|----|-------------|---------|---+
|battery_level|c02_level|cca2|cca3|cn |device_id|...|
+-------------|---------|----|----|-------------|---------|---+
0	1466	US	USA	United States	17	...
9	986	FR	FRA	France	48	...
8	1436	US	USA	United States	54	...
4	1090	US	USA	United States	63	...
4	1072	PH	PHL	Philippines	81	...
+-------------|---------|----|----|-------------|---------|---+
only showing top 5 rows

In this query, we used a function as an argument to the Dataset method filter().
This is an overloaded method with many signatures. The version we used, fil
ter(func: (T) > Boolean): Dataset[T], takes a lambda function, func: (T) >
Boolean, as its argument.

The argument to the lambda function is a JVM object of type DeviceIoTData. As
such, we can access its individual data fields using the dot (.) notation, like you
would in a Scala class or JavaBean.

Another thing to note is that with DataFrames, you express your filter() condi‐
tions as SQL-like DSL operations, which are language-agnostic (as we saw earlier in
the fire calls examples). With Datasets, we use language-native expressions as Scala or
Java code.

Here’s another example that results in another, smaller Dataset:

// In Scala
case class DeviceTempByCountry(temp: Long, device_name: String, device_id: Long,
 cca3: String)
val dsTemp = ds
 .filter(d => {d.temp > 25})
 .map(d => (d.temp, d.device_name, d.device_id, d.cca3))
 .toDF("temp", "device_name", "device_id", "cca3")

72 | Chapter 3: Apache Spark’s Structured APIs

 .as[DeviceTempByCountry]
dsTemp.show(5, false)

+----+---------------------+---------+----+
|temp|device_name |device_id|cca3|
+----+---------------------+---------+----+
34	meter-gauge-1xbYRYcj	1	USA
28	sensor-pad-4mzWkz	4	USA
27	sensor-pad-6al7RTAobR	6	USA
27	sensor-pad-8xUD6pzsQI	8	JPN
26	sensor-pad-10BsywSYUF	10	USA
+----+---------------------+---------+----+
only showing top 5 rows

Or you can inspect only the first row of your Dataset:

val device = dsTemp.first()
println(device)

device: DeviceTempByCountry =
DeviceTempByCountry(34,meter-gauge-1xbYRYcj,1,USA)

Alternatively, you could express the same query using column names and then cast to
a Dataset[DeviceTempByCountry]:

// In Scala
val dsTemp2 = ds
 .select($"temp", $"device_name", $"device_id", $"device_id", $"cca3")
 .where("temp > 25")
 .as[DeviceTempByCountry]

Semantically, select() is like map() in the previous query, in that
both of these queries select fields and generate equivalent results.

To recap, the operations we can perform on Datasets—filter(), map(), groupBy(),
select(), take(), etc.—are similar to the ones on DataFrames. In a way, Datasets are
similar to RDDs in that they provide a similar interface to its aforementioned meth‐
ods and compile-time safety but with a much easier to read and an object-oriented
programming interface.

When we use Datasets, the underlying Spark SQL engine handles the creation, con‐
version, serialization, and deserialization of the JVM objects. It also takes care of off-
Java heap memory management with the help of Dataset encoders. (We will talk more
about Datasets and memory management in Chapter 6.)

The Dataset API | 73

End-to-End Dataset Example
In this end-to-end Dataset example you’ll conduct similar exploratory data analysis,
ETL (extract, transform, and load), and data operations as in the DataFrame example,
using the IoT data set. This data set is small and fake, but our main goal here is to
illustrate the clarity with which you can express queries with Datasets and the read‐
ability of those queries, just as we did with DataFrames.

Again, for brevity, we won’t include all the example code here; however, we have fur‐
nished the notebook in the GitHub repo. The notebook explores common operations
you might conduct with this data set. Using the Dataset API, we attempt to do the
following:

1. Detect failing devices with battery levels below a threshold.
2. Identify offending countries with high levels of CO2 emissions.
3. Compute the min and max values for temperature, battery level, CO2, and

humidity.
4. Sort and group by average temperature, CO2, humidity, and country.

DataFrames Versus Datasets
By now you may be wondering why and when you should use DataFrames or Data‐
sets. In many cases either will do, depending on the languages you are working in, but
there are some situations where one is preferable to the other. Here are a few
examples:

• If you want to tell Spark what to do, not how to do it, use DataFrames or Datasets.
• If you want rich semantics, high-level abstractions, and DSL operators, use Data‐

Frames or Datasets.
• If you want strict compile-time type safety and don’t mind creating multiple case

classes for a specific Dataset[T], use Datasets.
• If your processing demands high-level expressions, filters, maps, aggregations,

computing averages or sums, SQL queries, columnar access, or use of relational
operators on semi-structured data, use DataFrames or Datasets.

• If your processing dictates relational transformations similar to SQL-like queries,
use DataFrames.

• If you want to take advantage of and benefit from Tungsten’s efficient serializa‐
tion with Encoders, , use Datasets.

• If you want unification, code optimization, and simplification of APIs across
Spark components, use DataFrames.

74 | Chapter 3: Apache Spark’s Structured APIs

https://github.com/databricks/LearningSparkV2/
https://oreil.ly/13XHQ

• If you are an R user, use DataFrames.
• If you are a Python user, use DataFrames and drop down to RDDs if you need

more control.
• If you want space and speed efficiency, use DataFrames.
• If you want errors caught during compilation rather than at runtime, choose the

appropriate API as depicted in Figure 3-2.

Figure 3-2. When errors are detected using the Structured APIs

When to Use RDDs
You may ask: Are RDDs being relegated to second-class citizens? Are they being dep‐
recated? The answer is a resounding no! The RDD API will continue to be supported,
although all future development work in Spark 2.x and Spark 3.0 will continue to
have a DataFrame interface and semantics rather than using RDDs.

There are some scenarios where you’ll want to consider using RDDs, such as when
you:

• Are using a third-party package that’s written using RDDs
• Can forgo the code optimization, efficient space utilization, and performance

benefits available with DataFrames and Datasets
• Want to precisely instruct Spark how to do a query

What’s more, you can seamlessly move between DataFrames or Datasets and RDDs at
will using a simple API method call, df.rdd. (Note, however, that this does have a
cost and should be avoided unless necessary.) After all, DataFrames and Datasets are
built on top of RDDs, and they get decomposed to compact RDD code during whole-
stage code generation, which we discuss in the next section.

Finally, the preceding sections provided some intuition on how Structured APIs in
Spark enable developers to use easy and friendly APIs to compose expressive queries
on structured data. In other words, you tell Spark what to do, not how to do it, using

DataFrames Versus Datasets | 75

high-level operations, and it ascertains the most efficient way to build a query and
generates compact code for you.

This process of building efficient queries and generating compact code is the job of
the Spark SQL engine. It’s the substrate upon which the Structured APIs we’ve been
looking at are built. Let’s peek under the hood at that engine now.

Spark SQL and the Underlying Engine
At a programmatic level, Spark SQL allows developers to issue ANSI SQL:2003–com‐
patible queries on structured data with a schema. Since its introduction in Spark 1.3,
Spark SQL has evolved into a substantial engine upon which many high-level struc‐
tured functionalities have been built. Apart from allowing you to issue SQL-like quer‐
ies on your data, the Spark SQL engine:

• Unifies Spark components and permits abstraction to DataFrames/Datasets in
Java, Scala, Python, and R, which simplifies working with structured data sets.

• Connects to the Apache Hive metastore and tables.
• Reads and writes structured data with a specific schema from structured file for‐

mats (JSON, CSV, Text, Avro, Parquet, ORC, etc.) and converts data into tempo‐
rary tables.

• Offers an interactive Spark SQL shell for quick data exploration.
• Provides a bridge to (and from) external tools via standard database JDBC/

ODBC connectors.
• Generates optimized query plans and compact code for the JVM, for final

execution.

Figure 3-3 shows the components that Spark SQL interacts with to achieve all of this.

76 | Chapter 3: Apache Spark’s Structured APIs

Figure 3-3. Spark SQL and its stack

At the core of the Spark SQL engine are the Catalyst optimizer and Project Tungsten.
Together, these support the high-level DataFrame and Dataset APIs and SQL queries.
We’ll talk more about Tungsten in Chapter 6; for now, let’s take a closer look at the
optimizer.

The Catalyst Optimizer
The Catalyst optimizer takes a computational query and converts it into an execution
plan. It goes through four transformational phases, as shown in Figure 3-4:

1. Analysis
2. Logical optimization
3. Physical planning
4. Code generation

Spark SQL and the Underlying Engine | 77

https://oreil.ly/jMDOi

Figure 3-4. A Spark computation’s four-phase journey

For example, consider one of the queries from our M&Ms example in Chapter 2.
Both of the following sample code blocks will go through the same process, eventu‐
ally ending up with a similar query plan and identical bytecode for execution. That is,
regardless of the language you use, your computation undergoes the same journey
and the resulting bytecode is likely the same:

In Python
count_mnm_df = (mnm_df
 .select("State", "Color", "Count")
 .groupBy("State", "Color")
 .agg(count("Count")
 .alias("Total"))
 .orderBy("Total", ascending=False))

78 | Chapter 3: Apache Spark’s Structured APIs

-- In SQL
SELECT State, Color, Count, sum(Count) AS Total
FROM MNM_TABLE_NAME
GROUP BY State, Color, Count
ORDER BY Total DESC

To see the different stages the Python code goes through, you can use the
count_mnm_df.explain(True) method on the DataFrame. Or, to get a look at the dif‐
ferent logical and physical plans, in Scala you can call df.queryExecution.logical
or df.queryExecution.optimizedPlan. (In Chapter 7, we will discuss more about
tuning and debugging Spark and how to read query plans.) This gives us the follow‐
ing output:

count_mnm_df.explain(True)

== Parsed Logical Plan ==
'Sort ['Total DESC NULLS LAST], true
+- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) AS...]
 +- Project [State#10, Color#11, Count#12]
 +- Relation[State#10,Color#11,Count#12] csv

== Analyzed Logical Plan ==
State: string, Color: string, Total: bigint
Sort [Total#24L DESC NULLS LAST], true
+- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) AS...]
 +- Project [State#10, Color#11, Count#12]
 +- Relation[State#10,Color#11,Count#12] csv

== Optimized Logical Plan ==
Sort [Total#24L DESC NULLS LAST], true
+- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) AS...]
 +- Relation[State#10,Color#11,Count#12] csv

== Physical Plan ==
*(3) Sort [Total#24L DESC NULLS LAST], true, 0
+- Exchange rangepartitioning(Total#24L DESC NULLS LAST, 200)
 +- *(2) HashAggregate(keys=[State#10, Color#11], functions=[count(Count#12)],
output=[State#10, Color#11, Total#24L])
 +- Exchange hashpartitioning(State#10, Color#11, 200)
 +- *(1) HashAggregate(keys=[State#10, Color#11],
functions=[partial_count(Count#12)], output=[State#10, Color#11, count#29L])
 +- *(1) FileScan csv [State#10,Color#11,Count#12] Batched: false,
Format: CSV, Location:
InMemoryFileIndex[file:/Users/jules/gits/LearningSpark2.0/chapter2/py/src/...
dataset.csv], PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<State:string,Color:string,Count:int>

Let’s consider another DataFrame computation example. The following Scala code
undergoes a similar journey as the underlying engine optimizes its logical and physi‐
cal plans:

Spark SQL and the Underlying Engine | 79

// In Scala
// Users DataFrame read from a Parquet table
val usersDF = ...
// Events DataFrame read from a Parquet table
val eventsDF = ...
// Join two DataFrames
val joinedDF = users
 .join(events, users("id") === events("uid"))
 .filter(events("date") > "2015-01-01")

After going through an initial analysis phase, the query plan is transformed and rear‐
ranged by the Catalyst optimizer as shown in Figure 3-5.

Figure 3-5. An example of a specific query transformation

80 | Chapter 3: Apache Spark’s Structured APIs

Let’s go through each of the four query optimization phases..

Phase 1: Analysis
The Spark SQL engine begins by generating an abstract syntax tree (AST) for the SQL
or DataFrame query. In this initial phase, any columns or table names will be resolved
by consulting an internal Catalog, a programmatic interface to Spark SQL that holds
a list of names of columns, data types, functions, tables, databases, etc. Once they’ve
all been successfully resolved, the query proceeds to the next phase.

Phase 2: Logical optimization
As Figure 3-4 shows, this phase comprises two internal stages. Applying a standard-
rule based optimization approach, the Catalyst optimizer will first construct a set of
multiple plans and then, using its cost-based optimizer (CBO), assign costs to each
plan. These plans are laid out as operator trees (like in Figure 3-5); they may include,
for example, the process of constant folding, predicate pushdown, projection prun‐
ing, Boolean expression simplification, etc. This logical plan is the input into the
physical plan.

Phase 3: Physical planning
In this phase, Spark SQL generates an optimal physical plan for the selected logical
plan, using physical operators that match those available in the Spark execution
engine.

Phase 4: Code generation
The final phase of query optimization involves generating efficient Java bytecode to
run on each machine. Because Spark SQL can operate on data sets loaded in memory,
Spark can use state-of-the-art compiler technology for code generation to speed up
execution. In other words, it acts as a compiler. Project Tungsten, which facilitates
whole-stage code generation, plays a role here.

Just what is whole-stage code generation? It’s a physical query optimization phase that
collapses the whole query into a single function, getting rid of virtual function calls
and employing CPU registers for intermediate data. The second-generation Tungsten
engine, introduced in Spark 2.0, uses this approach to generate compact RDD code
for final execution. This streamlined strategy significantly improves CPU efficiency
and performance.

Spark SQL and the Underlying Engine | 81

https://oreil.ly/mOIv4
https://oreil.ly/xVVpP
https://oreil.ly/_PYnW
https://oreil.ly/B3A7y

We have talked at a conceptual level about the workings of the
Spark SQL engine, with its two principal components: the Catalyst
optimizer and Project Tungsten. The internal technical workings
are beyond the scope of this book; however, for the curious, we
encourage you to check out the references in the text for in-depth
technical discussions.

Summary
In this chapter, we took a deep dive into Spark’s Structured APIs, beginning with a
look at the history and merits of structure in Spark.

Through illustrative common data operations and code examples, we demonstrated
that the high-level DataFrame and Dataset APIs are far more expressive and intuitive
than the low-level RDD API. Designed to make processing of large data sets easier,
the Structured APIs provide domain-specific operators for common data operations,
increasing the clarity and expressiveness of your code.

We explored when to use RDDs, DataFrames, and Datasets, depending on your use
case scenarios.

And finally, we took a look under the hood to see how the Spark SQL engine’s main
components—the Catalyst optimizer and Project Tungsten—support structured high-
level APIs and DSL operators. As you saw, no matter which of the Spark-supported
languages you use, a Spark query undergoes the same optimization journey, from log‐
ical and physical plan construction to final compact code generation.

The concepts and code examples in this chapter have laid the groundwork for the
next two chapters, in which we will further illustrate the seamless interoperability
between DataFrames, Datasets, and Spark SQL.

82 | Chapter 3: Apache Spark’s Structured APIs

CHAPTER 4

Spark SQL and DataFrames:
Introduction to Built-in Data Sources

In the previous chapter, we explained the evolution of and justification for structure
in Spark. In particular, we discussed how the Spark SQL engine provides a unified
foundation for the high-level DataFrame and Dataset APIs. Now, we’ll continue our
discussion of the DataFrame and explore its interoperability with Spark SQL.

This chapter and the next also explore how Spark SQL interfaces with some of the
external components shown in Figure 4-1.

In particular, Spark SQL:

• Provides the engine upon which the high-level Structured APIs we explored in
Chapter 3 are built.

• Can read and write data in a variety of structured formats (e.g., JSON, Hive
tables, Parquet, Avro, ORC, CSV).

• Lets you query data using JDBC/ODBC connectors from external business intel‐
ligence (BI) data sources such as Tableau, Power BI, Talend, or from RDBMSs
such as MySQL and PostgreSQL.

• Provides a programmatic interface to interact with structured data stored as
tables or views in a database from a Spark application

• Offers an interactive shell to issue SQL queries on your structured data.
• Supports ANSI SQL:2003-compliant commands and HiveQL.

83

https://oreil.ly/83QYa
https://oreil.ly/QFza4

Figure 4-1. Spark SQL connectors and data sources

Let’s begin with how you can use Spark SQL in a Spark application.

Using Spark SQL in Spark Applications
The SparkSession, introduced in Spark 2.0, provides a unified entry point for pro‐
gramming Spark with the Structured APIs. You can use a SparkSession to access
Spark functionality: just import the class and create an instance in your code.

To issue any SQL query, use the sql() method on the SparkSession instance, spark,
such as spark.sql("SELECT * FROM myTableName"). All spark.sql queries executed
in this manner return a DataFrame on which you may perform further Spark opera‐
tions if you desire—the kind we explored in Chapter 3 and the ones you will learn
about in this chapter and the next.

84 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/B7FZh

Basic Query Examples
In this section we’ll walk through a few examples of queries on the Airline On-Time
Performance and Causes of Flight Delays data set, which contains data on US flights
including date, delay, distance, origin, and destination. It’s available as a CSV file with
over a million records. Using a schema, we’ll read the data into a DataFrame and reg‐
ister the DataFrame as a temporary view (more on temporary views shortly) so we
can query it with SQL.

Query examples are provided in code snippets, and Python and Scala notebooks
containing all of the code presented here are available in the book’s GitHub repo.
These examples will offer you a taste of how to use SQL in your Spark applications via
the spark.sql programmatic interface. Similar to the DataFrame API in its declara‐
tive flavor, this interface allows you to query structured data in your Spark
applications.

Normally, in a standalone Spark application, you will create a SparkSession instance
manually, as shown in the following example. However, in a Spark shell (or Data‐
bricks notebook), the SparkSession is created for you and accessible via the appro‐
priately named variable spark.

Let’s get started by reading the data set into a temporary view:

// In Scala
import org.apache.spark.sql.SparkSession
val spark = SparkSession
 .builder
 .appName("SparkSQLExampleApp")
 .getOrCreate()

// Path to data set
val csvFile="/databricks-datasets/learning-spark-v2/flights/departuredelays.csv"

// Read and create a temporary view
// Infer schema (note that for larger files you may want to specify the schema)
val df = spark.read.format("csv")
 .option("inferSchema", "true")
 .option("header", "true")
 .load(csvFile)
// Create a temporary view
df.createOrReplaceTempView("us_delay_flights_tbl")

In Python
from pyspark.sql import SparkSession
Create a SparkSession
spark = (SparkSession
 .builder
 .appName("SparkSQLExampleApp")
 .getOrCreate())

Using Spark SQL in Spark Applications | 85

https://oreil.ly/gfzLZ
https://oreil.ly/gfzLZ
https://github.com/databricks/LearningSparkV2
https://spark.apache.org/sql

Path to data set
csv_file = "/databricks-datasets/learning-spark-v2/flights/departuredelays.csv"

Read and create a temporary view
Infer schema (note that for larger files you
may want to specify the schema)
df = (spark.read.format("csv")
 .option("inferSchema", "true")
 .option("header", "true")
 .load(csv_file))
df.createOrReplaceTempView("us_delay_flights_tbl")

If you want to specify a schema, you can use a DDL-formatted
string. For example:

// In Scala
val schema = "date STRING, delay INT, distance INT,
 origin STRING, destination STRING"

In Python
schema = "`date` STRING, `delay` INT, `distance` INT,
 `origin` STRING, `destination` STRING"

Now that we have a temporary view, we can issue SQL queries using Spark SQL.
These queries are no different from those you might issue against a SQL table in, say,
a MySQL or PostgreSQL database. The point here is to show that Spark SQL offers an
ANSI:2003–compliant SQL interface, and to demonstrate the interoperability
between SQL and DataFrames.

The US flight delays data set has five columns:

• The date column contains a string like 02190925. When converted, this maps to
02-19 09:25 am.

• The delay column gives the delay in minutes between the scheduled and actual
departure times. Early departures show negative numbers.

• The distance column gives the distance in miles from the origin airport to the
destination airport.

• The origin column contains the origin IATA airport code.
• The destination column contains the destination IATA airport code.

With that in mind, let’s try some example queries against this data set.

First, we’ll find all flights whose distance is greater than 1,000 miles:

spark.sql("""SELECT distance, origin, destination
FROM us_delay_flights_tbl WHERE distance > 1000
ORDER BY distance DESC""").show(10)

86 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

+--------+------+-----------+
|distance|origin|destination|
+--------+------+-----------+
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
+--------+------+-----------+
only showing top 10 rows

As the results show, all of the longest flights were between Honolulu (HNL) and New
York (JFK). Next, we’ll find all flights between San Francisco (SFO) and Chicago
(ORD) with at least a two-hour delay:

spark.sql("""SELECT date, delay, origin, destination
FROM us_delay_flights_tbl
WHERE delay > 120 AND ORIGIN = 'SFO' AND DESTINATION = 'ORD'
ORDER by delay DESC""").show(10)

+--------+-----+------+-----------+
|date |delay|origin|destination|
+--------+-----+------+-----------+
02190925	1638	SFO	ORD
01031755	396	SFO	ORD
01022330	326	SFO	ORD
01051205	320	SFO	ORD
01190925	297	SFO	ORD
02171115	296	SFO	ORD
01071040	279	SFO	ORD
01051550	274	SFO	ORD
03120730	266	SFO	ORD
01261104	258	SFO	ORD
+--------+-----+------+-----------+
only showing top 10 rows

It seems there were many significantly delayed flights between these two cities, on dif‐
ferent dates. (As an exercise, convert the date column into a readable format and find
the days or months when these delays were most common. Were the delays related to
winter months or holidays?)

Let’s try a more complicated query where we use the CASE clause in SQL. In the fol‐
lowing example, we want to label all US flights, regardless of origin and destination,
with an indication of the delays they experienced: Very Long Delays (> 6 hours),
Long Delays (2–6 hours), etc. We’ll add these human-readable labels in a new column
called Flight_Delays:

Using Spark SQL in Spark Applications | 87

spark.sql("""SELECT delay, origin, destination,
 CASE
 WHEN delay > 360 THEN 'Very Long Delays'
 WHEN delay > 120 AND delay < 360 THEN 'Long Delays'
 WHEN delay > 60 AND delay < 120 THEN 'Short Delays'
 WHEN delay > 0 and delay < 60 THEN 'Tolerable Delays'
 WHEN delay = 0 THEN 'No Delays'
 ELSE 'Early'
 END AS Flight_Delays
 FROM us_delay_flights_tbl
 ORDER BY origin, delay DESC""").show(10)

+-----+------+-----------+-------------+
|delay|origin|destination|Flight_Delays|
+-----+------+-----------+-------------+
333	ABE	ATL	Long Delays
305	ABE	ATL	Long Delays
275	ABE	ATL	Long Delays
257	ABE	ATL	Long Delays
247	ABE	DTW	Long Delays
247	ABE	ATL	Long Delays
219	ABE	ORD	Long Delays
211	ABE	ATL	Long Delays
197	ABE	DTW	Long Delays
192	ABE	ORD	Long Delays
+-----+------+-----------+-------------+
only showing top 10 rows

As with the DataFrame and Dataset APIs, with the spark.sql interface you can con‐
duct common data analysis operations like those we explored in the previous chapter.
The computations undergo an identical journey in the Spark SQL engine (see “The
Catalyst Optimizer” on page 77 in Chapter 3 for details), giving you the same results.

All three of the preceding SQL queries can be expressed with an equivalent Data‐
Frame API query. For example, the first query can be expressed in the Python Data‐
Frame API as:

In Python
from pyspark.sql.functions import col, desc
(df.select("distance", "origin", "destination")
 .where(col("distance") > 1000)
 .orderBy(desc("distance"))).show(10)

Or
(df.select("distance", "origin", "destination")
 .where("distance > 1000")
 .orderBy("distance", ascending=False).show(10))

This produces the same results as the SQL query:

88 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

+--------+------+-----------+
|distance|origin|destination|
+--------+------+-----------+
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
4330	HNL	JFK
+--------+------+-----------+
only showing top 10 rows

As an exercise, try converting the other two SQL queries to use the DataFrame API.

As these examples show, using the Spark SQL interface to query data is similar to
writing a regular SQL query to a relational database table. Although the queries are in
SQL, you can feel the similarity in readability and semantics to DataFrame API oper‐
ations, which you encountered in Chapter 3 and will explore further in the next
chapter.

To enable you to query structured data as shown in the preceding examples, Spark
manages all the complexities of creating and managing views and tables, both in
memory and on disk. That leads us to our next topic: how tables and views are cre‐
ated and managed.

SQL Tables and Views
Tables hold data. Associated with each table in Spark is its relevant metadata, which is
information about the table and its data: the schema, description, table name, data‐
base name, column names, partitions, physical location where the actual data resides,
etc. All of this is stored in a central metastore.

Instead of having a separate metastore for Spark tables, Spark by default uses the
Apache Hive metastore, located at /user/hive/warehouse, to persist all the metadata
about your tables. However, you may change the default location by setting the Spark
config variable spark.sql.warehouse.dir to another location, which can be set to a
local or external distributed storage.

Managed Versus UnmanagedTables
Spark allows you to create two types of tables: managed and unmanaged. For a man‐
aged table, Spark manages both the metadata and the data in the file store. This could
be a local filesystem, HDFS, or an object store such as Amazon S3 or Azure Blob. For

SQL Tables and Views | 89

an unmanaged table, Spark only manages the metadata, while you manage the data
yourself in an external data source such as Cassandra.

With a managed table, because Spark manages everything, a SQL command such as
DROP TABLE table_name deletes both the metadata and the data. With an unmanaged
table, the same command will delete only the metadata, not the actual data. We will
look at some examples of how to create managed and unmanaged tables in the next
section.

Creating SQL Databases and Tables
Tables reside within a database. By default, Spark creates tables under the default
database. To create your own database name, you can issue a SQL command from
your Spark application or notebook. Using the US flight delays data set, let’s create
both a managed and an unmanaged table. To begin, we’ll create a database called
learn_spark_db and tell Spark we want to use that database:

// In Scala/Python
spark.sql("CREATE DATABASE learn_spark_db")
spark.sql("USE learn_spark_db")

From this point, any commands we issue in our application to create tables will result
in the tables being created in this database and residing under the database name
learn_spark_db.

Creating a managed table

To create a managed table within the database learn_spark_db, you can issue a SQL
query like the following:

// In Scala/Python
spark.sql("CREATE TABLE managed_us_delay_flights_tbl (date STRING, delay INT,
 distance INT, origin STRING, destination STRING)")

You can do the same thing using the DataFrame API like this:

In Python
Path to our US flight delays CSV file
csv_file = "/databricks-datasets/learning-spark-v2/flights/departuredelays.csv"
Schema as defined in the preceding example
schema="date STRING, delay INT, distance INT, origin STRING, destination STRING"
flights_df = spark.read.csv(csv_file, schema=schema)
flights_df.write.saveAsTable("managed_us_delay_flights_tbl")

Both of these statements will create the managed table us_delay_flights_tbl in the
learn_spark_db database.

90 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/Scvor

Creating an unmanaged table
By contrast, you can create unmanaged tables from your own data sources—say, Par‐
quet, CSV, or JSON files stored in a file store accessible to your Spark application.

To create an unmanaged table from a data source such as a CSV file, in SQL use:

spark.sql("""CREATE TABLE us_delay_flights_tbl(date STRING, delay INT,
 distance INT, origin STRING, destination STRING)
 USING csv OPTIONS (PATH
 '/databricks-datasets/learning-spark-v2/flights/departuredelays.csv')""")

And within the DataFrame API use:

(flights_df
 .write
 .option("path", "/tmp/data/us_flights_delay")
 .saveAsTable("us_delay_flights_tbl"))

To enable you to explore these examples, we have created Python
and Scala example notebooks that you can find in the book’s Git‐
Hub repo.

Creating Views
In addition to creating tables, Spark can create views on top of existing tables. Views
can be global (visible across all SparkSessions on a given cluster) or session-scoped
(visible only to a single SparkSession), and they are temporary: they disappear after
your Spark application terminates.

Creating views has a similar syntax to creating tables within a database. Once you cre‐
ate a view, you can query it as you would a table. The difference between a view and a
table is that views don’t actually hold the data; tables persist after your Spark applica‐
tion terminates, but views disappear.

You can create a view from an existing table using SQL. For example, if you wish to
work on only the subset of the US flight delays data set with origin airports of New
York (JFK) and San Francisco (SFO), the following queries will create global tempo‐
rary and temporary views consisting of just that slice of the table:

-- In SQL
CREATE OR REPLACE GLOBAL TEMP VIEW us_origin_airport_SFO_global_tmp_view AS
 SELECT date, delay, origin, destination from us_delay_flights_tbl WHERE
 origin = 'SFO';

CREATE OR REPLACE TEMP VIEW us_origin_airport_JFK_tmp_view AS
 SELECT date, delay, origin, destination from us_delay_flights_tbl WHERE
 origin = 'JFK'

SQL Tables and Views | 91

https://github.com/databricks/LearningSparkV2
https://github.com/databricks/LearningSparkV2
https://oreil.ly/8OqlM

You can accomplish the same thing with the DataFrame API as follows:

In Python
df_sfo = spark.sql("SELECT date, delay, origin, destination FROM
 us_delay_flights_tbl WHERE origin = 'SFO'")
df_jfk = spark.sql("SELECT date, delay, origin, destination FROM
 us_delay_flights_tbl WHERE origin = 'JFK'")

Create a temporary and global temporary view
df_sfo.createOrReplaceGlobalTempView("us_origin_airport_SFO_global_tmp_view")
df_jfk.createOrReplaceTempView("us_origin_airport_JFK_tmp_view")

Once you’ve created these views, you can issue queries against them just as you would
against a table. Keep in mind that when accessing a global temporary view you must
use the prefix global_temp.<view_name>, because Spark creates global temporary
views in a global temporary database called global_temp. For example:

-- In SQL
SELECT * FROM global_temp.us_origin_airport_SFO_global_tmp_view

By contrast, you can access the normal temporary view without the global_temp
prefix:

-- In SQL
SELECT * FROM us_origin_airport_JFK_tmp_view

// In Scala/Python
spark.read.table("us_origin_airport_JFK_tmp_view")
// Or
spark.sql("SELECT * FROM us_origin_airport_JFK_tmp_view")

You can also drop a view just like you would a table:

-- In SQL
DROP VIEW IF EXISTS us_origin_airport_SFO_global_tmp_view;
DROP VIEW IF EXISTS us_origin_airport_JFK_tmp_view

// In Scala/Python
spark.catalog.dropGlobalTempView("us_origin_airport_SFO_global_tmp_view")
spark.catalog.dropTempView("us_origin_airport_JFK_tmp_view")

Temporary views versus global temporary views
The difference between temporary and global temporary views being subtle, it can be a
source of mild confusion among developers new to Spark. A temporary view is tied
to a single SparkSession within a Spark application. In contrast, a global temporary
view is visible across multiple SparkSessions within a Spark application. Yes, you can
create multiple SparkSessions within a single Spark application—this can be handy,
for example, in cases where you want to access (and combine) data from two different
SparkSessions that don’t share the same Hive metastore configurations.

92 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/YbTFa

Viewing the Metadata
As mentioned previously, Spark manages the metadata associated with each managed
or unmanaged table. This is captured in the Catalog, a high-level abstraction in
Spark SQL for storing metadata. The Catalog’s functionality was expanded in Spark
2.x with new public methods enabling you to examine the metadata associated with
your databases, tables, and views. Spark 3.0 extends it to use external catalog (which
we briefly discuss in Chapter 12).

For example, within a Spark application, after creating the SparkSession variable
spark, you can access all the stored metadata through methods like these:

// In Scala/Python
spark.catalog.listDatabases()
spark.catalog.listTables()
spark.catalog.listColumns("us_delay_flights_tbl")

Import the notebook from the book’s GitHub repo and give it a try.

Caching SQL Tables
Although we will discuss table caching strategies in the next chapter, it’s worth men‐
tioning here that, like DataFrames, you can cache and uncache SQL tables and views.
In Spark 3.0, in addition to other options, you can specify a table as LAZY, meaning
that it should only be cached when it is first used instead of immediately:

-- In SQL
CACHE [LAZY] TABLE <table-name>
UNCACHE TABLE <table-name>

Reading Tables into DataFrames
Often, data engineers build data pipelines as part of their regular data ingestion and
ETL processes. They populate Spark SQL databases and tables with cleansed data for
consumption by applications downstream.

Let’s assume you have an existing database, learn_spark_db, and table,
us_delay_flights_tbl, ready for use. Instead of reading from an external JSON file,
you can simply use SQL to query the table and assign the returned result to a
DataFrame:

// In Scala
val usFlightsDF = spark.sql("SELECT * FROM us_delay_flights_tbl")
val usFlightsDF2 = spark.table("us_delay_flights_tbl")

SQL Tables and Views | 93

https://oreil.ly/56HYV
https://github.com/databricks/LearningSparkV2
https://oreil.ly/2ptwu

In Python
us_flights_df = spark.sql("SELECT * FROM us_delay_flights_tbl")
us_flights_df2 = spark.table("us_delay_flights_tbl")

Now you have a cleansed DataFrame read from an existing Spark SQL table. You can
also read data in other formats using Spark’s built-in data sources, giving you the flex‐
ibility to interact with various common file formats.

Data Sources for DataFrames and SQL Tables
As shown in Figure 4-1, Spark SQL provides an interface to a variety of data sources.
It also provides a set of common methods for reading and writing data to and from
these data sources using the Data Sources API.

In this section we will cover some of the built-in data sources, available file formats,
and ways to load and write data, along with specific options pertaining to these data
sources. But first, let’s take a closer look at two high-level Data Source API constructs
that dictate the manner in which you interact with different data sources: DataFrameR
eader and DataFrameWriter.

DataFrameReader
DataFrameReader is the core construct for reading data from a data source into a
DataFrame. It has a defined format and a recommended pattern for usage:

DataFrameReader.format(args).option("key", "value").schema(args).load()

This pattern of stringing methods together is common in Spark, and easy to read. We
saw it in Chapter 3 when exploring common data analysis patterns.

Note that you can only access a DataFrameReader through a SparkSession instance.
That is, you cannot create an instance of DataFrameReader. To get an instance handle
to it, use:

SparkSession.read
// or
SparkSession.readStream

While read returns a handle to DataFrameReader to read into a DataFrame from a
static data source, readStream returns an instance to read from a streaming source.
(We will cover Structured Streaming later in the book.)

Arguments to each of the public methods to DataFrameReader take different values.
Table 4-1 enumerates these, with a subset of the supported arguments.

94 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/_8-6A
https://oreil.ly/Hj9pd
https://oreil.ly/UZXdx

Table 4-1. DataFrameReader methods, arguments, and options

Method Arguments Description
format() "parquet", "csv", "txt", "json",

"jdbc", "orc", "avro", etc.
If you don’t specify this method, then the default is
Parquet or whatever is set in spark.sql.sour
ces.default.

option() ("mode", {PERMISSIVE | FAILFAST

| DROPMALFORMED })

("inferSchema", {true | false})

("path",

"path_file_data_source")

A series of key/value pairs and options.
The Spark documentation shows some examples and
explains the different modes and their actions. The default
mode is PERMISSIVE. The "inferSchema" and
"mode" options are specific to the JSON and CSV file
formats.

schema() DDL String or StructType, e.g., 'A
INT, B STRING' or
StructType(...)

For JSON or CSV format, you can specify to infer the
schema in the option() method. Generally, providing a
schema for any format makes loading faster and ensures
your data conforms to the expected schema.

load() "/path/to/data/source" The path to the data source. This can be empty if specified
in option("path", "...").

While we won’t comprehensively enumerate all the different combinations of argu‐
ments and options, the documentation for Python, Scala, R, and Java offers sugges‐
tions and guidance. It’s worthwhile to show a couple of examples, though:

// In Scala
// Use Parquet
val file = """/databricks-datasets/learning-spark-v2/flights/summary-
 data/parquet/2010-summary.parquet"""
val df = spark.read.format("parquet").load(file)
// Use Parquet; you can omit format("parquet") if you wish as it's the default
val df2 = spark.read.load(file)
// Use CSV
val df3 = spark.read.format("csv")
 .option("inferSchema", "true")
 .option("header", "true")
 .option("mode", "PERMISSIVE")
 .load("/databricks-datasets/learning-spark-v2/flights/summary-data/csv/*")
// Use JSON
val df4 = spark.read.format("json")
 .load("/databricks-datasets/learning-spark-v2/flights/summary-data/json/*")

Data Sources for DataFrames and SQL Tables | 95

https://oreil.ly/XujEK
https://oreil.ly/RsfRg

In general, no schema is needed when reading from a static Parquet
data source—the Parquet metadata usually contains the schema, so
it’s inferred. However, for streaming data sources you will have to
provide a schema. (We will cover reading from streaming data
sources in Chapter 8.)
Parquet is the default and preferred data source for Spark because
it’s efficient, uses columnar storage, and employs a fast compres‐
sion algorithm. You will see additional benefits later (such as col‐
umnar pushdown), when we cover the Catalyst optimizer in
greater depth.

DataFrameWriter
DataFrameWriter does the reverse of its counterpart: it saves or writes data to a speci‐
fied built-in data source. Unlike with DataFrameReader, you access its instance not
from a SparkSession but from the DataFrame you wish to save. It has a few recom‐
mended usage patterns:

DataFrameWriter.format(args)
 .option(args)
 .bucketBy(args)
 .partitionBy(args)
 .save(path)

DataFrameWriter.format(args).option(args).sortBy(args).saveAsTable(table)

To get an instance handle, use:

DataFrame.write
// or
DataFrame.writeStream

Arguments to each of the methods to DataFrameWriter also take different values. We
list these in Table 4-2, with a subset of the supported arguments.

Table 4-2. DataFrameWriter methods, arguments, and options

Method Arguments Description
format() "parquet", "csv", "txt", "json",

"jdbc", "orc", "avro", etc.
If you don’t specify this method, then the default is Parquet
or whatever is set in spark.sql.sources.default.

option() ("mode", {append | overwrite

| ignore | error or errorifex

ists})

("mode", {SaveMode.Overwrite

| SaveMode.Append, Save

Mode.Ignore, SaveMode.ErrorI

fExists})

("path", "path_to_write_to")

A series of key/value pairs and options. The Spark
documentation shows some examples. This is an overloaded
method. The default mode options are error or error
ifexists and SaveMode.ErrorIfExists; they
throw an exception at runtime if the data already exists.

96 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/SM1LR
https://oreil.ly/w7J0I
https://oreil.ly/w7J0I

Method Arguments Description
buck

etBy()

(numBuckets, col, col...,

coln)

The number of buckets and names of columns to bucket by.
Uses Hive’s bucketing scheme on a filesystem.

save() "/path/to/data/source" The path to save to. This can be empty if specified in
option("path", "...").

saveAsTa

ble()

"table_name" The table to save to.

Here’s a short example snippet to illustrate the use of methods and arguments:

// In Scala
// Use JSON
val location = ...
df.write.format("json").mode("overwrite").save(location)

Parquet
We’ll start our exploration of data sources with Parquet, because it’s the default data
source in Spark. Supported and widely used by many big data processing frameworks
and platforms, Parquet is an open source columnar file format that offers many I/O
optimizations (such as compression, which saves storage space and allows for quick
access to data columns).

Because of its efficiency and these optimizations, we recommend that after you have
transformed and cleansed your data, you save your DataFrames in the Parquet format
for downstream consumption. (Parquet is also the default table open format for Delta
Lake, which we will cover in Chapter 9.)

Reading Parquet files into a DataFrame
Parquet files are stored in a directory structure that contains the data files, metadata,
a number of compressed files, and some status files. Metadata in the footer contains
the version of the file format, the schema, and column data such as the path, etc.

For example, a directory in a Parquet file might contain a set of files like this:

_SUCCESS
_committed_1799640464332036264
_started_1799640464332036264
part-00000-tid-1799640464332036264-91273258-d7ef-4dc7-<...>-c000.snappy.parquet

There may be a number of part-XXXX compressed files in a directory (the names
shown here have been shortened to fit on the page).

To read Parquet files into a DataFrame, you simply specify the format and path:

Data Sources for DataFrames and SQL Tables | 97

https://oreil.ly/-wptz
https://oreil.ly/CTVzK

// In Scala
val file = """/databricks-datasets/learning-spark-v2/flights/summary-data/
 parquet/2010-summary.parquet/"""
val df = spark.read.format("parquet").load(file)

In Python
file = """/databricks-datasets/learning-spark-v2/flights/summary-data/parquet/
 2010-summary.parquet/"""
df = spark.read.format("parquet").load(file)

Unless you are reading from a streaming data source there’s no need to supply the
schema, because Parquet saves it as part of its metadata.

Reading Parquet files into a Spark SQL table
As well as reading Parquet files into a Spark DataFrame, you can also create a Spark
SQL unmanaged table or view directly using SQL:

-- In SQL
CREATE OR REPLACE TEMPORARY VIEW us_delay_flights_tbl
 USING parquet
 OPTIONS (
 path "/databricks-datasets/learning-spark-v2/flights/summary-data/parquet/
 2010-summary.parquet/")

Once you’ve created the table or view, you can read data into a DataFrame using SQL,
as we saw in some earlier examples:

// In Scala
spark.sql("SELECT * FROM us_delay_flights_tbl").show()

In Python
spark.sql("SELECT * FROM us_delay_flights_tbl").show()

Both of these operations return the same results:

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1
United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

98 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

Writing DataFrames to Parquet files
Writing or saving a DataFrame as a table or file is a common operation in Spark. To
write a DataFrame you simply use the methods and arguments to the DataFrame
Writer outlined earlier in this chapter, supplying the location to save the Parquet files
to. For example:

// In Scala
df.write.format("parquet")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/parquet/df_parquet")

In Python
(df.write.format("parquet")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/parquet/df_parquet"))

Recall that Parquet is the default file format. If you don’t include
the format() method, the DataFrame will still be saved as a Par‐
quet file.

This will create a set of compact and compressed Parquet files at the specified path.
Since we used snappy as our compression choice here, we’ll have snappy compressed
files. For brevity, this example generated only one file; normally, there may be a dozen
or so files created:

-rw-r--r-- 1 jules wheel 0 May 19 10:58 _SUCCESS
-rw-r--r-- 1 jules wheel 966 May 19 10:58 part-00000-<...>-c000.snappy.parquet

Writing DataFrames to Spark SQL tables

Writing a DataFrame to a SQL table is as easy as writing to a file—just use saveAsTa
ble() instead of save(). This will create a managed table called
us_delay_flights_tbl:

// In Scala
df.write
 .mode("overwrite")
 .saveAsTable("us_delay_flights_tbl")

In Python
(df.write
 .mode("overwrite")
 .saveAsTable("us_delay_flights_tbl"))

Data Sources for DataFrames and SQL Tables | 99

To sum up, Parquet is the preferred and default built-in data source file format in
Spark, and it has been adopted by many other frameworks. We recommend that you
use this format in your ETL and data ingestion processes.

JSON
JavaScript Object Notation (JSON) is also a popular data format. It came to promi‐
nence as an easy-to-read and easy-to-parse format compared to XML. It has two rep‐
resentational formats: single-line mode and multiline mode. Both modes are
supported in Spark.

In single-line mode each line denotes a single JSON object, whereas in multiline
mode the entire multiline object constitutes a single JSON object. To read in this
mode, set multiLine to true in the option() method.

Reading a JSON file into a DataFrame
You can read a JSON file into a DataFrame the same way you did with Parquet—just
specify "json" in the format() method:

// In Scala
val file = "/databricks-datasets/learning-spark-v2/flights/summary-data/json/*"
val df = spark.read.format("json").load(file)

In Python
file = "/databricks-datasets/learning-spark-v2/flights/summary-data/json/*"
df = spark.read.format("json").load(file)

Reading a JSON file into a Spark SQL table
You can also create a SQL table from a JSON file just like you did with Parquet:

-- In SQL
CREATE OR REPLACE TEMPORARY VIEW us_delay_flights_tbl
 USING json
 OPTIONS (
 path "/databricks-datasets/learning-spark-v2/flights/summary-data/json/*"
)

Once the table is created, you can read data into a DataFrame using SQL:

// In Scala/Python
spark.sql("SELECT * FROM us_delay_flights_tbl").show()

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	15
United States	Croatia	1
United States	Ireland	344
Egypt	United States	15

100 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/bBdLc
http://jsonlines.org/

United States	India	62
United States	Singapore	1
United States	Grenada	62
Costa Rica	United States	588
Senegal	United States	40
Moldova	United States	1
+-----------------+-------------------+-----+
only showing top 10 rows

Writing DataFrames to JSON files
Saving a DataFrame as a JSON file is simple. Specify the appropriate
DataFrameWriter methods and arguments, and supply the location to save the JSON
files to:

// In Scala
df.write.format("json")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/json/df_json")

In Python
(df.write.format("json")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/json/df_json"))

This creates a directory at the specified path populated with a set of compact JSON
files:

-rw-r--r-- 1 jules wheel 0 May 16 14:44 _SUCCESS
-rw-r--r-- 1 jules wheel 71 May 16 14:44 part-00000-<...>-c000.json

JSON data source options

Table 4-3 describes common JSON options for DataFrameReader and DataFrame
Writer. For a comprehensive list, we refer you to the documentation.

Table 4-3. JSON options for DataFrameReader and DataFrameWriter

Property name Values Meaning Scope
compression none, uncompressed,

bzip2, deflate, gzip,
lz4, or snappy

Use this compression codec for writing. Note that read
will only detect the compression or codec from the file
extension.

Write

dateFormat yyyy-MM-dd or DateTi
meFormatter

Use this format or any format from Java’s DateTime
Formatter.

Read/
write

multiLine true, false Use multiline mode. Default is false (single-line
mode).

Read

allowUnquoted

FieldNames

true, false Allow unquoted JSON field names. Default is false. Read

Data Sources for DataFrames and SQL Tables | 101

https://oreil.ly/iDZ2T
https://oreil.ly/MunK1
https://oreil.ly/MunK1

CSV
As widely used as plain text files, this common text file format captures each datum
or field delimited by a comma; each line with comma-separated fields represents a
record. Even though a comma is the default separator, you may use other delimiters
to separate fields in cases where commas are part of your data. Popular spreadsheets
can generate CSV files, so it’s a popular format among data and business analysts.

Reading a CSV file into a DataFrame

As with the other built-in data sources, you can use the DataFrameReader methods
and arguments to read a CSV file into a DataFrame:

// In Scala
val file = "/databricks-datasets/learning-spark-v2/flights/summary-data/csv/*"
val schema = "DEST_COUNTRY_NAME STRING, ORIGIN_COUNTRY_NAME STRING, count INT"

val df = spark.read.format("csv")
 .schema(schema)
 .option("header", "true")
 .option("mode", "FAILFAST") // Exit if any errors
 .option("nullValue", "") // Replace any null data with quotes
 .load(file)

In Python
file = "/databricks-datasets/learning-spark-v2/flights/summary-data/csv/*"
schema = "DEST_COUNTRY_NAME STRING, ORIGIN_COUNTRY_NAME STRING, count INT"
df = (spark.read.format("csv")
 .option("header", "true")
 .schema(schema)
 .option("mode", "FAILFAST") # Exit if any errors
 .option("nullValue", "") # Replace any null data field with quotes
 .load(file))

Reading a CSV file into a Spark SQL table
Creating a SQL table from a CSV data source is no different from using Parquet or
JSON:

-- In SQL
CREATE OR REPLACE TEMPORARY VIEW us_delay_flights_tbl
 USING csv
 OPTIONS (
 path "/databricks-datasets/learning-spark-v2/flights/summary-data/csv/*",
 header "true",
 inferSchema "true",
 mode "FAILFAST"
)

Once you’ve created the table, you can read data into a DataFrame using SQL as
before:

102 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

// In Scala/Python
spark.sql("SELECT * FROM us_delay_flights_tbl").show(10)

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1
United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

Writing DataFrames to CSV files

Saving a DataFrame as a CSV file is simple. Specify the appropriate DataFrameWriter
methods and arguments, and supply the location to save the CSV files to:

// In Scala
df.write.format("csv").mode("overwrite").save("/tmp/data/csv/df_csv")

In Python
df.write.format("csv").mode("overwrite").save("/tmp/data/csv/df_csv")

This generates a folder at the specified location, populated with a bunch of com‐
pressed and compact files:

-rw-r--r-- 1 jules wheel 0 May 16 12:17 _SUCCESS
-rw-r--r-- 1 jules wheel 36 May 16 12:17 part-00000-251690eb-<...>-c000.csv

CSV data source options

Table 4-4 describes some of the common CSV options for DataFrameReader and Data
FrameWriter. Because CSV files can be complex, many options are available; for a
comprehensive list we refer you to the documentation.

Data Sources for DataFrames and SQL Tables | 103

https://oreil.ly/Au6Kd
https://oreil.ly/4g-vz
https://oreil.ly/4g-vz

Table 4-4. CSV options for DataFrameReader and DataFrameWriter

Property name Values Meaning Scope
compression none, bzip2, deflate,

gzip, lz4, or snappy
Use this compression codec for writing. Write

dateFormat yyyy-MM-dd or DateTime
Formatter

Use this format or any format from Java’s Date
TimeFormatter.

Read/
write

multiLine true, false Use multiline mode. Default is false (single-
line mode).

Read

inferSchema true, false If true, Spark will determine the column data
types. Default is false.

Read

sep Any character Use this character to separate column values in a
row. Default delimiter is a comma (,).

Read/
write

escape Any character Use this character to escape quotes. Default is \. Read/
write

header true, false Indicates whether the first line is a header
denoting each column name. Default is false.

Read/
write

Avro
Introduced in Spark 2.4 as a built-in data source, the Avro format is used, for exam‐
ple, by Apache Kafka for message serializing and deserializing. It offers many bene‐
fits, including direct mapping to JSON, speed and efficiency, and bindings available
for many programming languages.

Reading an Avro file into a DataFrame

Reading an Avro file into a DataFrame using DataFrameReader is consistent in usage
with the other data sources we have discussed in this section:

// In Scala
val df = spark.read.format("avro")
 .load("/databricks-datasets/learning-spark-v2/flights/summary-data/avro/*")
df.show(false)

In Python
df = (spark.read.format("avro")
 .load("/databricks-datasets/learning-spark-v2/flights/summary-data/avro/*"))
df.show(truncate=False)

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1

104 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/gqZl0
https://oreil.ly/UaJoR
https://oreil.ly/jhdTI

United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

Reading an Avro file into a Spark SQL table
Again, creating SQL tables using an Avro data source is no different from using Par‐
quet, JSON, or CSV:

-- In SQL
CREATE OR REPLACE TEMPORARY VIEW episode_tbl
 USING avro
 OPTIONS (
 path "/databricks-datasets/learning-spark-v2/flights/summary-data/avro/*"
)

Once you’ve created a table, you can read data into a DataFrame using SQL:

// In Scala
spark.sql("SELECT * FROM episode_tbl").show(false)

In Python
spark.sql("SELECT * FROM episode_tbl").show(truncate=False)

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1
United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

Writing DataFrames to Avro files

Writing a DataFrame as an Avro file is simple. As usual, specify the appropriate Data
FrameWriter methods and arguments, and supply the location to save the Avro files
to:

Data Sources for DataFrames and SQL Tables | 105

// In Scala
df.write
 .format("avro")
 .mode("overwrite")
 .save("/tmp/data/avro/df_avro")

In Python
(df.write
 .format("avro")
 .mode("overwrite")
 .save("/tmp/data/avro/df_avro"))

This generates a folder at the specified location, populated with a bunch of com‐
pressed and compact files:

-rw-r--r-- 1 jules wheel 0 May 17 11:54 _SUCCESS
-rw-r--r-- 1 jules wheel 526 May 17 11:54 part-00000-ffdf70f4-<...>-c000.avro

Avro data source options

Table 4-5 describes common options for DataFrameReader and DataFrameWriter. A
comprehensive list of options is in the documentation.

Table 4-5. Avro options for DataFrameReader and DataFrameWriter

Property name Default
value

Meaning Scope

avroSchema None Optional Avro schema provided by a user in JSON format. The data
type and naming of record fields should match the input Avro data or
Catalyst data (Spark internal data type), otherwise the read/write
action will fail.

Read/
write

recordName topLevel

Record

Top-level record name in write result, which is required in the Avro
spec.

Write

recordNamespace "" Record namespace in write result. Write

ignoreExtension true If this option is enabled, all files (with and without the .avro
extension) are loaded. Otherwise, files without the .avro extension are
ignored.

Read

compression snappy Allows you to specify the compression codec to use in writing.
Currently supported codecs are uncompressed, snappy,
deflate, bzip2, and xz.
If this option is not set, the value in spark.sql.avro.compres
sion.codec is taken into account.

Write

ORC
As an additional optimized columnar file format, Spark 2.x supports a vectorized
ORC reader. Two Spark configurations dictate which ORC implementation to use.
When spark.sql.orc.impl is set to native and spark.sql.orc.enableVectorize
dReader is set to true, Spark uses the vectorized ORC reader. A vectorized reader

106 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/Jvrd_
https://oreil.ly/N_Brd
https://oreil.ly/N_Brd
https://oreil.ly/E2xiZ

reads blocks of rows (often 1,024 per block) instead of one row at a time, streamlining
operations and reducing CPU usage for intensive operations like scans, filters, aggre‐
gations, and joins.

For Hive ORC SerDe (serialization and deserialization) tables created with the SQL
command USING HIVE OPTIONS (fileFormat 'ORC'), the vectorized reader is used
when the Spark configuration parameter spark.sql.hive.convertMetastoreOrc is
set to true.

Reading an ORC file into a DataFrame
To read in a DataFrame using the ORC vectorized reader, you can just use the normal
DataFrameReader methods and options:

// In Scala
val file = "/databricks-datasets/learning-spark-v2/flights/summary-data/orc/*"
val df = spark.read.format("orc").load(file)
df.show(10, false)

In Python
file = "/databricks-datasets/learning-spark-v2/flights/summary-data/orc/*"
df = spark.read.format("orc").option("path", file).load()
df.show(10, False)

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1
United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

Reading an ORC file into a Spark SQL table
There is no difference from Parquet, JSON, CSV, or Avro when creating a SQL view
using an ORC data source:

-- In SQL
CREATE OR REPLACE TEMPORARY VIEW us_delay_flights_tbl
 USING orc
 OPTIONS (
 path "/databricks-datasets/learning-spark-v2/flights/summary-data/orc/*"
)

Data Sources for DataFrames and SQL Tables | 107

Once a table is created, you can read data into a DataFrame using SQL as usual:

// In Scala/Python
spark.sql("SELECT * FROM us_delay_flights_tbl").show()

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
United States	Romania	1
United States	Ireland	264
United States	India	69
Egypt	United States	24
Equatorial Guinea	United States	1
United States	Singapore	25
United States	Grenada	54
Costa Rica	United States	477
Senegal	United States	29
United States	Marshall Islands	44
+-----------------+-------------------+-----+
only showing top 10 rows

Writing DataFrames to ORC files
Writing back a transformed DataFrame after reading is equally simple using the
DataFrameWriter methods:

// In Scala
df.write.format("orc")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/orc/df_orc")

In Python
(df.write.format("orc")
 .mode("overwrite")
 .option("compression", "snappy")
 .save("/tmp/data/orc/flights_orc"))

The result will be a folder at the specified location containing some compressed ORC
files:

-rw-r--r-- 1 jules wheel 0 May 16 17:23 _SUCCESS
-rw-r--r-- 1 jules wheel 547 May 16 17:23 part-00000-<...>-c000.snappy.orc

Images
In Spark 2.4 the community introduced a new data source, image files, to support
deep learning and machine learning frameworks such as TensorFlow and PyTorch.
For computer vision–based machine learning applications, loading and processing
image data sets is important.

108 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/JfKBD

Reading an image file into a DataFrame

As with all of the previous file formats, you can use the DataFrameReader methods
and options to read in an image file as shown here:

// In Scala
import org.apache.spark.ml.source.image

val imageDir = "/databricks-datasets/learning-spark-v2/cctvVideos/train_images/"
val imagesDF = spark.read.format("image").load(imageDir)

imagesDF.printSchema

imagesDF.select("image.height", "image.width", "image.nChannels", "image.mode",
 "label").show(5, false)

In Python
from pyspark.ml import image

image_dir = "/databricks-datasets/learning-spark-v2/cctvVideos/train_images/"
images_df = spark.read.format("image").load(image_dir)
images_df.printSchema()

root
 |-- image: struct (nullable = true)
 | |-- origin: string (nullable = true)
 | |-- height: integer (nullable = true)
 | |-- width: integer (nullable = true)
 | |-- nChannels: integer (nullable = true)
 | |-- mode: integer (nullable = true)
 | |-- data: binary (nullable = true)
 |-- label: integer (nullable = true)

images_df.select("image.height", "image.width", "image.nChannels", "image.mode",
 "label").show(5, truncate=False)

+------+-----+---------+----+-----+
|height|width|nChannels|mode|label|
+------+-----+---------+----+-----+
288	384	3	16	0
288	384	3	16	1
288	384	3	16	0
288	384	3	16	0
288	384	3	16	0
+------+-----+---------+----+-----+
only showing top 5 rows

Data Sources for DataFrames and SQL Tables | 109

Binary Files
Spark 3.0 adds support for binary files as a data source. The DataFrameReader con‐
verts each binary file into a single DataFrame row (record) that contains the raw con‐
tent and metadata of the file. The binary file data source produces a DataFrame with
the following columns:

• path: StringType
• modificationTime: TimestampType
• length: LongType
• content: BinaryType

Reading a binary file into a DataFrame

To read binary files, specify the data source format as a binaryFile. You can load files
with paths matching a given global pattern while preserving the behavior of partition
discovery with the data source option pathGlobFilter. For example, the following
code reads all JPG files from the input directory with any partitioned directories:

// In Scala
val path = "/databricks-datasets/learning-spark-v2/cctvVideos/train_images/"
val binaryFilesDF = spark.read.format("binaryFile")
 .option("pathGlobFilter", "*.jpg")
 .load(path)
binaryFilesDF.show(5)

In Python
path = "/databricks-datasets/learning-spark-v2/cctvVideos/train_images/"
binary_files_df = (spark.read.format("binaryFile")
 .option("pathGlobFilter", "*.jpg")
 .load(path))
binary_files_df.show(5)

+--------------------+-------------------+------+--------------------+-----+
| path| modificationTime|length| content|label|
+--------------------+-------------------+------+--------------------+-----+
file:/Users/jules...	2020-02-12 12:04:24	55037	[FF D8 FF E0 00 1...	0
file:/Users/jules...	2020-02-12 12:04:24	54634	[FF D8 FF E0 00 1...	1
file:/Users/jules...	2020-02-12 12:04:24	54624	[FF D8 FF E0 00 1...	0
file:/Users/jules...	2020-02-12 12:04:24	54505	[FF D8 FF E0 00 1...	0
file:/Users/jules...	2020-02-12 12:04:24	54475	[FF D8 FF E0 00 1...	0
+--------------------+-------------------+------+--------------------+-----+
only showing top 5 rows

To ignore partitioning data discovery in a directory, you can set recursiveFile
Lookup to "true":

110 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://oreil.ly/UXHZl

// In Scala
val binaryFilesDF = spark.read.format("binaryFile")
 .option("pathGlobFilter", "*.jpg")
 .option("recursiveFileLookup", "true")
 .load(path)
binaryFilesDF.show(5)

In Python
binary_files_df = (spark.read.format("binaryFile")
 .option("pathGlobFilter", "*.jpg")
 .option("recursiveFileLookup", "true")
 .load(path))
binary_files_df.show(5)

+--------------------+-------------------+------+--------------------+
| path| modificationTime|length| content|
+--------------------+-------------------+------+--------------------+
file:/Users/jules...	2020-02-12 12:04:24	55037	[FF D8 FF E0 00 1...
file:/Users/jules...	2020-02-12 12:04:24	54634	[FF D8 FF E0 00 1...
file:/Users/jules...	2020-02-12 12:04:24	54624	[FF D8 FF E0 00 1...
file:/Users/jules...	2020-02-12 12:04:24	54505	[FF D8 FF E0 00 1...
file:/Users/jules...	2020-02-12 12:04:24	54475	[FF D8 FF E0 00 1...
+--------------------+-------------------+------+--------------------+
only showing top 5 rows

Note that the label column is absent when the recursiveFileLookup option is set to
"true".

Currently, the binary file data source does not support writing a DataFrame back to
the original file format.

In this section, you got a tour of how to read data into a DataFrame from a range of
supported file formats. We also showed you how to create temporary views and tables
from the existing built-in data sources. Whether you’re using the DataFrame API or
SQL, the queries produce identical outcomes. You can examine some of these queries
in the notebook available in the GitHub repo for this book.

Summary
To recap, this chapter explored the interoperability between the DataFrame API and
Spark SQL. In particular, you got a flavor of how to use Spark SQL to:

• Create managed and unmanaged tables using Spark SQL and the DataFrame
API.

• Read from and write to various built-in data sources and file formats.
• Employ the spark.sql programmatic interface to issue SQL queries on struc‐

tured data stored as Spark SQL tables or views.
• Peruse the Spark Catalog to inspect metadata associated with tables and views.

Summary | 111

https://github.com/databricks/LearningSparkV2

• Use the DataFrameWriter and DataFrameReader APIs.

Through the code snippets in the chapter and the notebooks available in the book’s
GitHub repo, you got a feel for how to use DataFrames and Spark SQL. Continuing in
this vein, the next chapter further explores how Spark interacts with the external data
sources shown in Figure 4-1. You’ll see some more in-depth examples of transforma‐
tions and the interoperability between the DataFrame API and Spark SQL.

112 | Chapter 4: Spark SQL and DataFrames: Introduction to Built-in Data Sources

https://github.com/databricks/LearningSparkV2

1 The current Spark SQL engine no longer uses the Hive code in its implementation.

CHAPTER 5

Spark SQL and DataFrames:
Interacting with External Data Sources

In the previous chapter, we explored interacting with the built-in data sources in
Spark. We also took a closer look at the DataFrame API and its interoperability with
Spark SQL. In this chapter, we will focus on how Spark SQL interfaces with external
components. Specifically, we discuss how Spark SQL allows you to:

• Use user-defined functions for both Apache Hive and Apache Spark.
• Connect with external data sources such as JDBC and SQL databases, Post‐

greSQL, MySQL, Tableau, Azure Cosmos DB, and MS SQL Server.
• Work with simple and complex types, higher-order functions, and common rela‐

tional operators.

We’ll also look at some different options for querying Spark using Spark SQL, such as
the Spark SQL shell, Beeline, and Tableau.

Spark SQL and Apache Hive
Spark SQL is a foundational component of Apache Spark that integrates relational
processing with Spark’s functional programming API. Its genesis was in previous
work on Shark. Shark was originally built on the Hive codebase on top of Apache
Spark1 and became one of the first interactive SQL query engines on Hadoop systems.
It demonstrated that it was possible to have the best of both worlds; as fast as an
enterprise data warehouse, and scaling as well as Hive/MapReduce.

113

https://oreil.ly/QEixA
https://oreil.ly/QEixA
https://oreil.ly/FrPY6

Spark SQL lets Spark programmers leverage the benefits of faster performance and
relational programming (e.g., declarative queries and optimized storage), as well as
call complex analytics libraries (e.g., machine learning). As discussed in the previous
chapter, as of Apache Spark 2.x, the SparkSession provides a single unified entry
point to manipulate data in Spark.

User-Defined Functions
While Apache Spark has a plethora of built-in functions, the flexibility of Spark
allows for data engineers and data scientists to define their own functions too. These
are known as user-defined functions (UDFs).

Spark SQL UDFs
The benefit of creating your own PySpark or Scala UDFs is that you (and others) will
be able to make use of them within Spark SQL itself. For example, a data scientist can
wrap an ML model within a UDF so that a data analyst can query its predictions in
Spark SQL without necessarily understanding the internals of the model.

Here’s a simplified example of creating a Spark SQL UDF. Note that UDFs operate per
session and they will not be persisted in the underlying metastore:

// In Scala
// Create cubed function
val cubed = (s: Long) => {
 s * s * s
}

// Register UDF
spark.udf.register("cubed", cubed)

// Create temporary view
spark.range(1, 9).createOrReplaceTempView("udf_test")

In Python
from pyspark.sql.types import LongType

Create cubed function
def cubed(s):
 return s * s * s

Register UDF
spark.udf.register("cubed", cubed, LongType())

Generate temporary view
spark.range(1, 9).createOrReplaceTempView("udf_test")

114 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

You can now use Spark SQL to execute either of these cubed() functions:

// In Scala/Python
// Query the cubed UDF
spark.sql("SELECT id, cubed(id) AS id_cubed FROM udf_test").show()

+---+--------+
| id|id_cubed|
+---+--------+
1	1
2	8
3	27
4	64
5	125
6	216
7	343
8	512
+---+--------+

Evaluation order and null checking in Spark SQL
Spark SQL (this includes SQL, the DataFrame API, and the Dataset API) does not
guarantee the order of evaluation of subexpressions. For example, the following query
does not guarantee that the s is NOT NULL clause is executed prior to the strlen(s)
> 1 clause:

spark.sql("SELECT s FROM test1 WHERE s IS NOT NULL AND strlen(s) > 1")

Therefore, to perform proper null checking, it is recommended that you do the
following:

1. Make the UDF itself null-aware and do null checking inside the UDF.
2. Use IF or CASE WHEN expressions to do the null check and invoke the UDF in a

conditional branch.

Speeding up and distributing PySpark UDFs with Pandas UDFs
One of the previous prevailing issues with using PySpark UDFs was that they had
slower performance than Scala UDFs. This was because the PySpark UDFs required
data movement between the JVM and Python, which was quite expensive. To resolve
this problem, Pandas UDFs (also known as vectorized UDFs) were introduced as part
of Apache Spark 2.3. A Pandas UDF uses Apache Arrow to transfer data and Pandas
to work with the data. You define a Pandas UDF using the keyword pandas_udf as
the decorator, or to wrap the function itself. Once the data is in Apache Arrow for‐
mat, there is no longer the need to serialize/pickle the data as it is already in a format
consumable by the Python process. Instead of operating on individual inputs row by
row, you are operating on a Pandas Series or DataFrame (i.e., vectorized execution).

Spark SQL and Apache Hive | 115

https://oreil.ly/jo7kl
https://oreil.ly/TCsur
https://oreil.ly/TCsur

2 Note there are slight differences when working with Pandas UDFs between Spark 2.3, 2.4, and 3.0.

From Apache Spark 3.0 with Python 3.6 and above, Pandas UDFs were split into two
API categories: Pandas UDFs and Pandas Function APIs.

Pandas UDFs
With Apache Spark 3.0, Pandas UDFs infer the Pandas UDF type from Python
type hints in Pandas UDFs such as pandas.Series, pandas.DataFrame, Tuple,
and Iterator. Previously you needed to manually define and specify each Pan‐
das UDF type. Currently, the supported cases of Python type hints in Pandas
UDFs are Series to Series, Iterator of Series to Iterator of Series, Iterator of Multi‐
ple Series to Iterator of Series, and Series to Scalar (a single value).

Pandas Function APIs
Pandas Function APIs allow you to directly apply a local Python function to a
PySpark DataFrame where both the input and output are Pandas instances. For
Spark 3.0, the supported Pandas Function APIs are grouped map, map, co-
grouped map.

For more information, refer to “Redesigned Pandas UDFs with Python Type Hints”
on page 354 in Chapter 12.

The following is an example of a scalar Pandas UDF for Spark 3.0:2

In Python
Import pandas
import pandas as pd

Import various pyspark SQL functions including pandas_udf
from pyspark.sql.functions import col, pandas_udf
from pyspark.sql.types import LongType

Declare the cubed function
def cubed(a: pd.Series) -> pd.Series:
 return a * a * a

Create the pandas UDF for the cubed function
cubed_udf = pandas_udf(cubed, returnType=LongType())

The preceding code snippet declares a function called cubed() that performs a cubed
operation. This is a regular Pandas function with the additional cubed_udf = pan
das_udf() call to create our Pandas UDF.

116 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/pIZk-
https://oreil.ly/0NYG-
https://oreil.ly/9wA4s
https://oreil.ly/rXX-L
https://oreil.ly/rXX-L

Let’s start with a simple Pandas Series (as defined for x) and then apply the local func‐
tion cubed() for the cubed calculation:

Create a Pandas Series
x = pd.Series([1, 2, 3])

The function for a pandas_udf executed with local Pandas data
print(cubed(x))

The output is as follows:

0 1
1 8
2 27
dtype: int64

Now let’s switch to a Spark DataFrame. We can execute this function as a Spark vec‐
torized UDF as follows:

Create a Spark DataFrame, 'spark' is an existing SparkSession
df = spark.range(1, 4)

Execute function as a Spark vectorized UDF
df.select("id", cubed_udf(col("id"))).show()

Here’s the output:

+---+---------+
| id|cubed(id)|
+---+---------+
1	1
2	8
3	27
+---+---------+

As opposed to a local function, using a vectorized UDF will result in the execution of
Spark jobs; the previous local function is a Pandas function executed only on the
Spark driver. This becomes more apparent when viewing the Spark UI for one of the
stages of this pandas_udf function (Figure 5-1).

For a deeper dive into Pandas UDFs, refer to pandas user-defined
functions documentation.

Spark SQL and Apache Hive | 117

https://oreil.ly/Qi-pb
https://oreil.ly/Qi-pb

Figure 5-1. Spark UI stages for executing a Pandas UDF on a Spark DataFrame

118 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

Like many Spark jobs, the job starts with parallelize() to send local data (Arrow
binary batches) to executors and calls mapPartitions() to convert the Arrow binary
batches to Spark’s internal data format, which can be distributed to the Spark work‐
ers. There are a number of WholeStageCodegen steps, which represent a fundamental
step up in performance (thanks to Project Tungsten’s whole-stage code generation,
which significantly improves CPU efficiency and performance). But it is the ArrowE
valPython step that identifies that (in this case) a Pandas UDF is being executed.

Querying with the Spark SQL Shell, Beeline, and Tableau
There are various mechanisms to query Apache Spark, including the Spark SQL shell,
the Beeline CLI utility, and reporting tools like Tableau and Power BI.

In this section, we include instructions for Tableau; for Power BI, please refer to the
documentation.

Using the Spark SQL Shell
A convenient tool for executing Spark SQL queries is the spark-sql CLI. While this
utility communicates with the Hive metastore service in local mode, it does not talk
to the Thrift JDBC/ODBC server (a.k.a. Spark Thrift Server or STS). The STS allows
JDBC/ODBC clients to execute SQL queries over JDBC and ODBC protocols on
Apache Spark.

To start the Spark SQL CLI, execute the following command in the $SPARK_HOME
folder:

./bin/spark-sql

Once you’ve started the shell, you can use it to interactively perform Spark SQL quer‐
ies. Let’s take a look at a few examples.

Create a table
To create a new permanent Spark SQL table, execute the following statement:

spark-sql> CREATE TABLE people (name STRING, age int);

Your output should be similar to this, noting the creation of the Spark SQL table
people as well as its file location (/user/hive/warehouse/people):

Querying with the Spark SQL Shell, Beeline, and Tableau | 119

https://oreil.ly/5Khvp
https://oreil.ly/n_KRU
https://oreil.ly/kdfko

20/01/11 22:42:16 WARN HiveMetaStore: Location: file:/user/hive/warehouse/people
specified for non-external table:people
Time taken: 0.63 seconds

Insert data into the table
You can insert data into a Spark SQL table by executing a statement similar to:

INSERT INTO people SELECT name, age FROM ...

As you’re not dependent on loading data from a preexisting table or file, you can
insert data into the table using INSERT...VALUES statements. These three statements
insert three individuals (their names and ages, if known) into the people table:

spark-sql> INSERT INTO people VALUES ("Michael", NULL);
Time taken: 1.696 seconds
spark-sql> INSERT INTO people VALUES ("Andy", 30);
Time taken: 0.744 seconds
spark-sql> INSERT INTO people VALUES ("Samantha", 19);
Time taken: 0.637 seconds
spark-sql>

Running a Spark SQL query
Now that you have data in your table, you can run Spark SQL queries against it. Let’s
start by viewing what tables exist in our metastore:

spark-sql> SHOW TABLES;
default people false
Time taken: 0.016 seconds, Fetched 1 row(s)

Next, let’s find out how many people in our table are younger than 20 years of age:

spark-sql> SELECT * FROM people WHERE age < 20;
Samantha 19
Time taken: 0.593 seconds, Fetched 1 row(s)

As well, let’s see who the individuals are who did not specify their age:

spark-sql> SELECT name FROM people WHERE age IS NULL;
Michael
Time taken: 0.272 seconds, Fetched 1 row(s)

Working with Beeline
If you’ve worked with Apache Hive you may be familiar with the command-line tool
Beeline, a common utility for running HiveQL queries against HiveServer2. Beeline
is a JDBC client based on the SQLLine CLI. You can use this same utility to execute
Spark SQL queries against the Spark Thrift server. Note that the currently imple‐
mented Thrift JDBC/ODBC server corresponds to HiveServer2 in Hive 1.2.1. You
can test the JDBC server with the following Beeline script that comes with either
Spark or Hive 1.2.1.

120 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/Lcrs-
http://sqlline.sourceforge.net

Start the Thrift server
To start the Spark Thrift JDBC/ODBC server, execute the following command from
the $SPARK_HOME folder:

./sbin/start-thriftserver.sh

If you have not already started your Spark driver and worker, exe‐
cute the following command prior to start-thriftserver.sh:

./sbin/start-all.sh

Connect to the Thrift server via Beeline
To test the Thrift JDBC/ODBC server using Beeline, execute the following command:

./bin/beeline

Then configure Beeline to connect to the local Thrift server:

!connect jdbc:hive2://localhost:10000

By default, Beeline is in non-secure mode. Thus, the username is
your login (e.g., user@learningspark.org) and the password is
blank.

Execute a Spark SQL query with Beeline
From here, you can run a Spark SQL query similar to how you would run a Hive
query with Beeline. Here are a few sample queries and their output:

0: jdbc:hive2://localhost:10000> SHOW tables;

+-----------+------------+--------------+
| database | tableName | isTemporary |
+-----------+------------+--------------+
| default | people | false |
+-----------+------------+--------------+
1 row selected (0.417 seconds)

0: jdbc:hive2://localhost:10000> SELECT * FROM people;

+-----------+-------+
| name | age |
+-----------+-------+
Samantha	19
Andy	30
Michael	NULL
+-----------+-------+

Querying with the Spark SQL Shell, Beeline, and Tableau | 121

3 rows selected (1.512 seconds)

0: jdbc:hive2://localhost:10000>

Stop the Thrift server
Once you’re done, you can stop the Thrift server with the following command:

./sbin/stop-thriftserver.sh

Working with Tableau
Similar to running queries through Beeline or the Spark SQL CLI, you can connect
your favorite BI tool to Spark SQL via the Thrift JDBC/ODBC server. In this section,
we will show you how to connect Tableau Desktop (version 2019.2) to your local
Apache Spark instance.

You will need to have the Tableau’s Spark ODBC driver version
1.2.0 or above already installed. If you have installed (or upgraded
to) Tableau 2018.1 or greater, this driver should already be
preinstalled.

Start the Thrift server
To start the Spark Thrift JDBC/ODBC server, execute the following command from
the $SPARK_HOME folder:

./sbin/start-thriftserver.sh

If you have not already started your Spark driver and worker, exe‐
cute the following command prior to start-thriftserver.sh:

./sbin/start-all.sh

122 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/wIGnw

Start Tableau
If you are starting Tableau for the first time, you will be greeted with a Connect dialog
that allows you to connect to a plethora of data sources. By default, the Spark SQL
option will not be included in the “To a Server” menu on the left (see Figure 5-2).

Figure 5-2. Tableau Connect dialog box

Querying with the Spark SQL Shell, Beeline, and Tableau | 123

To access the Spark SQL option, click More… at the bottom of that list and then
choose Spark SQL from the list that appears in the main panel, as shown in
Figure 5-3.

Figure 5-3. Choose More… > Spark SQL to connect to Spark SQL

124 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

This will pop up the Spark SQL dialog (Figure 5-4). As you’re connecting to a local
Apache Spark instance, you can use the non-secure username authentication mode
with the following parameters:

• Server: localhost
• Port: 10000 (default)
• Type: SparkThriftServer (default)
• Authentication: Username
• Username: Your login, e.g., user@learningspark.org
• Require SSL: Not checked

Figure 5-4. The Spark SQL dialog box

Querying with the Spark SQL Shell, Beeline, and Tableau | 125

Once you have successfully connected to the Spark SQL data source, you will see a
Data Source Connections view similar to Figure 5-5.

Figure 5-5. Tableau Data Source Connections view, connected to a local Spark instance

126 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

From the Select Schema drop-down menu on the left, choose “default.” Then enter
the name of the table you want to query (see Figure 5-6). Note that you can click the
magnifying glass icon to get a full list of the tables that are available.

Figure 5-6. Select a schema and a table to query

For more information on using Tableau to connect to a Spark SQL
database, refer to Tableau’s Spark SQL documentation and the
Databricks Tableau documentation.

Querying with the Spark SQL Shell, Beeline, and Tableau | 127

https://oreil.ly/2A6L7
https://oreil.ly/--OXu

Enter people as the table name, then drag and drop the table from the left side into
the main dialog (in the space marked “Drag tables here”). You should see something
like Figure 5-7.

Figure 5-7. Connecting to the people table in your local Spark instance

Click Update Now, and under the covers Tableau will query your Spark SQL data
source (Figure 5-8).

You can now execute queries against your Spark data source, join tables, and more,
just like with any other Tableau data source.

128 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

Figure 5-8. Tableau worksheet table view querying a local Spark data source

Stop the Thrift server
Once you’re done, you can stop the Thrift server with the following command:

./sbin/stop-thriftserver.sh

External Data Sources
In this section, we will focus on how to use Spark SQL to connect to external data
sources, starting with JDBC and SQL databases.

JDBC and SQL Databases
Spark SQL includes a data source API that can read data from other databases using
JDBC. It simplifies querying these data sources as it returns the results as a Data‐
Frame, thus providing all of the benefits of Spark SQL (including performance and
the ability to join with other data sources).

To get started, you will need to specify the JDBC driver for your JDBC data source
and it will need to be on the Spark classpath. From the $SPARK_HOME folder, you’ll
issue a command like the following:

External Data Sources | 129

https://oreil.ly/PHi6y

./bin/spark-shell --driver-class-path $database.jar --jars $database.jar

Using the data source API, the tables from the remote database can be loaded as a
DataFrame or Spark SQL temporary view. Users can specify the JDBC connection
properties in the data source options. Table 5-1 contains some of the more common
connection properties (case-insensitive) that Spark supports.

Table 5-1. Common connection properties

Property
name

Description

user, pass
word

These are normally provided as connection properties for logging into the data sources.

url JDBC connection URL, e.g., jdbc:postgresql://localhost/test?user=fred&pass
word=secret.

dbtable JDBC table to read from or write to. You can’t specify the dbtable and query options at the same time.
query Query to be used to read data from Apache Spark, e.g., SELECT column1, column2, ..., col

umnN FROM [table|subquery]. You can’t specify the query and dbtable options at the same
time.

driver Class name of the JDBC driver to use to connect to the specified URL.

For the full list of connection properties, see the Spark SQL documentation.

The importance of partitioning
When transferring large amounts of data between Spark SQL and a JDBC external
source, it is important to partition your data source. All of your data is going through
one driver connection, which can saturate and significantly slow down the perfor‐
mance of your extraction, as well as potentially saturate the resources of your source
system. While these JDBC properties are optional, for any large-scale operations it is
highly recommended to use the properties shown in Table 5-2.

Table 5-2. Partitioning connection properties

Property name Description
numPartitions The maximum number of partitions that can be used for parallelism in table reading and

writing. This also determines the maximum number of concurrent JDBC connections.
partitionColumn When reading an external source, partitionColumn is the column that is used to

determine the partitions; note, partitionColumn must be a numeric, date, or
timestamp column.

lowerBound Sets the minimum value of partitionColumn for the partition stride.
upperBound Sets the maximum value of partitionColumn for the partition stride.

130 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/OUG9A

Let’s take a look at an example to help you understand how these properties work.
Suppose we use the following settings:

• numPartitions: 10
• lowerBound: 1000
• upperBound: 10000

Then the stride is equal to 1,000, and 10 partitions will be created. This is the equiva‐
lent of executing these 10 queries (one for each partition):

• SELECT * FROM table WHERE partitionColumn BETWEEN 1000 and 2000

• SELECT * FROM table WHERE partitionColumn BETWEEN 2000 and 3000

• ...

• SELECT * FROM table WHERE partitionColumn BETWEEN 9000 and 10000

While not all-encompassing, the following are some hints to keep in mind when
using these properties:

• A good starting point for numPartitions is to use a multiple of the number of
Spark workers. For example, if you have four Spark worker nodes, then perhaps
start with 4 or 8 partitions. But it is also important to note how well your source
system can handle the read requests. For systems that have processing windows,
you can maximize the number of concurrent requests to the source system; for
systems lacking processing windows (e.g., an OLTP system continuously process‐
ing data), you should reduce the number of concurrent requests to prevent satu‐
ration of the source system.

• Initially, calculate the lowerBound and upperBound based on the minimum and
maximum partitionColumn actual values. For example, if you choose
{numPartitions:10, lowerBound: 1000, upperBound: 10000}, but all of the
values are between 2000 and 4000, then only 2 of the 10 queries (one for each
partition) will be doing all of the work. In this scenario, a better configuration
would be {numPartitions:10, lowerBound: 2000, upperBound: 4000}.

• Choose a partitionColumn that can be uniformly distributed to avoid data skew.
For example, if the majority of your partitionColumn has the value 2500, with
{numPartitions:10, lowerBound: 1000, upperBound: 10000} most of the
work will be performed by the task requesting the values between 2000 and 3000.
Instead, choose a different partitionColumn, or if possible generate a new one
(perhaps a hash of multiple columns) to more evenly distribute your partitions.

External Data Sources | 131

https://oreil.ly/g7Cjc

PostgreSQL
To connect to a PostgreSQL database, build or download the JDBC jar from Maven
and add it to your classpath. Then start a Spark shell (spark-shell or pyspark), spec‐
ifying that jar:

bin/spark-shell --jars postgresql-42.2.6.jar

The following examples show how to load from and save to a PostgreSQL database
using the Spark SQL data source API and JDBC in Scala:

// In Scala
// Read Option 1: Loading data from a JDBC source using load method
val jdbcDF1 = spark
 .read
 .format("jdbc")
 .option("url", "jdbc:postgresql:[DBSERVER]")
 .option("dbtable", "[SCHEMA].[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .load()

// Read Option 2: Loading data from a JDBC source using jdbc method
// Create connection properties
import java.util.Properties
val cxnProp = new Properties()
cxnProp.put("user", "[USERNAME]")
cxnProp.put("password", "[PASSWORD]")

// Load data using the connection properties
val jdbcDF2 = spark
 .read
 .jdbc("jdbc:postgresql:[DBSERVER]", "[SCHEMA].[TABLENAME]", cxnProp)

// Write Option 1: Saving data to a JDBC source using save method
jdbcDF1
 .write
 .format("jdbc")
 .option("url", "jdbc:postgresql:[DBSERVER]")
 .option("dbtable", "[SCHEMA].[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .save()

// Write Option 2: Saving data to a JDBC source using jdbc method
jdbcDF2.write
 .jdbc(s"jdbc:postgresql:[DBSERVER]", "[SCHEMA].[TABLENAME]", cxnProp)

And here’s how to do it in PySpark:

In Python
Read Option 1: Loading data from a JDBC source using load method
jdbcDF1 = (spark

132 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/Tg5Z3

 .read
 .format("jdbc")
 .option("url", "jdbc:postgresql://[DBSERVER]")
 .option("dbtable", "[SCHEMA].[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .load())

Read Option 2: Loading data from a JDBC source using jdbc method
jdbcDF2 = (spark
 .read
 .jdbc("jdbc:postgresql://[DBSERVER]", "[SCHEMA].[TABLENAME]",
 properties={"user": "[USERNAME]", "password": "[PASSWORD]"}))

Write Option 1: Saving data to a JDBC source using save method
(jdbcDF1
 .write
 .format("jdbc")
 .option("url", "jdbc:postgresql://[DBSERVER]")
 .option("dbtable", "[SCHEMA].[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .save())

Write Option 2: Saving data to a JDBC source using jdbc method
(jdbcDF2
 .write
 .jdbc("jdbc:postgresql:[DBSERVER]", "[SCHEMA].[TABLENAME]",
 properties={"user": "[USERNAME]", "password": "[PASSWORD]"}))

MySQL
To connect to a MySQL database, build or download the JDBC jar from Maven or
MySQL (the latter is easier!) and add it to your classpath. Then start a Spark shell
(spark-shell or pyspark), specifying that jar:

bin/spark-shell --jars mysql-connector-java_8.0.16-bin.jar

The following examples show how to load data from and save it to a MySQL database
using the Spark SQL data source API and JDBC in Scala:

// In Scala
// Loading data from a JDBC source using load
val jdbcDF = spark
 .read
 .format("jdbc")
 .option("url", "jdbc:mysql://[DBSERVER]:3306/[DATABASE]")
 .option("driver", "com.mysql.jdbc.Driver")
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .load()

External Data Sources | 133

https://oreil.ly/c1sAC
https://oreil.ly/bH5zb

// Saving data to a JDBC source using save
jdbcDF
 .write
 .format("jdbc")
 .option("url", "jdbc:mysql://[DBSERVER]:3306/[DATABASE]")
 .option("driver", "com.mysql.jdbc.Driver")
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .save()

And here’s how to do it in Python:

In Python
Loading data from a JDBC source using load
jdbcDF = (spark
 .read
 .format("jdbc")
 .option("url", "jdbc:mysql://[DBSERVER]:3306/[DATABASE]")
 .option("driver", "com.mysql.jdbc.Driver")
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .load())

Saving data to a JDBC source using save
(jdbcDF
 .write
 .format("jdbc")
 .option("url", "jdbc:mysql://[DBSERVER]:3306/[DATABASE]")
 .option("driver", "com.mysql.jdbc.Driver")
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .save())

Azure Cosmos DB
To connect to an Azure Cosmos DB database, build or download the JDBC jar from
Maven or GitHub and add it to your classpath. Then start a Scala or PySpark shell,
specifying this jar (note that this example is using Spark 2.4):

bin/spark-shell --jars azure-cosmosdb-spark_2.4.0_2.11-1.3.5-uber.jar

You also have the option of using --packages to pull the connector from Spark Pack‐
ages using its Maven coordinates:

export PKG="com.microsoft.azure:azure-cosmosdb-spark_2.4.0_2.11:1.3.5"
bin/spark-shell --packages $PKG

134 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/vDVQ6
https://oreil.ly/dJMx1
https://spark-packages.org
https://spark-packages.org

The following examples show how to load data from and save it to an Azure Cosmos
DB database using the Spark SQL data source API and JDBC in Scala and PySpark.
Note that it is common to use the query_custom configuration to make use of the
various indexes within Cosmos DB:

// In Scala
// Import necessary libraries
import com.microsoft.azure.cosmosdb.spark.schema._
import com.microsoft.azure.cosmosdb.spark._
import com.microsoft.azure.cosmosdb.spark.config.Config

// Loading data from Azure Cosmos DB
// Configure connection to your collection
val query = "SELECT c.colA, c.coln FROM c WHERE c.origin = 'SEA'"
val readConfig = Config(Map(
 "Endpoint" -> "https://[ACCOUNT].documents.azure.com:443/",
 "Masterkey" -> "[MASTER KEY]",
 "Database" -> "[DATABASE]",
 "PreferredRegions" -> "Central US;East US2;",
 "Collection" -> "[COLLECTION]",
 "SamplingRatio" -> "1.0",
 "query_custom" -> query
))

// Connect via azure-cosmosdb-spark to create Spark DataFrame
val df = spark.read.cosmosDB(readConfig)
df.count

// Saving data to Azure Cosmos DB
// Configure connection to the sink collection
val writeConfig = Config(Map(
 "Endpoint" -> "https://[ACCOUNT].documents.azure.com:443/",
 "Masterkey" -> "[MASTER KEY]",
 "Database" -> "[DATABASE]",
 "PreferredRegions" -> "Central US;East US2;",
 "Collection" -> "[COLLECTION]",
 "WritingBatchSize" -> "100"
))

// Upsert the DataFrame to Azure Cosmos DB
import org.apache.spark.sql.SaveMode
df.write.mode(SaveMode.Overwrite).cosmosDB(writeConfig)

In Python
Loading data from Azure Cosmos DB
Read configuration
query = "SELECT c.colA, c.coln FROM c WHERE c.origin = 'SEA'"
readConfig = {
 "Endpoint" : "https://[ACCOUNT].documents.azure.com:443/",
 "Masterkey" : "[MASTER KEY]",
 "Database" : "[DATABASE]",
 "preferredRegions" : "Central US;East US2",

External Data Sources | 135

 "Collection" : "[COLLECTION]",
 "SamplingRatio" : "1.0",
 "schema_samplesize" : "1000",
 "query_pagesize" : "2147483647",
 "query_custom" : query
}

Connect via azure-cosmosdb-spark to create Spark DataFrame
df = (spark
 .read
 .format("com.microsoft.azure.cosmosdb.spark")
 .options(**readConfig)
 .load())

Count the number of flights
df.count()

Saving data to Azure Cosmos DB
Write configuration
writeConfig = {
 "Endpoint" : "https://[ACCOUNT].documents.azure.com:443/",
 "Masterkey" : "[MASTER KEY]",
 "Database" : "[DATABASE]",
 "Collection" : "[COLLECTION]",
 "Upsert" : "true"
}

Upsert the DataFrame to Azure Cosmos DB
(df.write
 .format("com.microsoft.azure.cosmosdb.spark")
 .options(**writeConfig)
 .save())

For more information, please refer to the Azure Cosmos DB documentation.

MS SQL Server
To connect to an MS SQL Server database, download the JDBC jar and add it to your
classpath. Then start a Scala or PySpark shell, specifying this jar:

bin/spark-shell --jars mssql-jdbc-7.2.2.jre8.jar

The following examples show how to load data from and save it to an MS SQL Server
database using the Spark SQL data source API and JDBC in Scala and PySpark:

136 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/OMXBH
https://oreil.ly/xHkDl

// In Scala
// Loading data from a JDBC source
// Configure jdbcUrl
val jdbcUrl = "jdbc:sqlserver://[DBSERVER]:1433;database=[DATABASE]"

// Create a Properties() object to hold the parameters.
// Note, you can create the JDBC URL without passing in the
// user/password parameters directly.
val cxnProp = new Properties()
cxnProp.put("user", "[USERNAME]")
cxnProp.put("password", "[PASSWORD]")
cxnProp.put("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")

// Load data using the connection properties
val jdbcDF = spark.read.jdbc(jdbcUrl, "[TABLENAME]", cxnProp)

// Saving data to a JDBC source
jdbcDF.write.jdbc(jdbcUrl, "[TABLENAME]", cxnProp)

In Python
Configure jdbcUrl
jdbcUrl = "jdbc:sqlserver://[DBSERVER]:1433;database=[DATABASE]"

Loading data from a JDBC source
jdbcDF = (spark
 .read
 .format("jdbc")
 .option("url", jdbcUrl)
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .load())

Saving data to a JDBC source
(jdbcDF
 .write
 .format("jdbc")
 .option("url", jdbcUrl)
 .option("dbtable", "[TABLENAME]")
 .option("user", "[USERNAME]")
 .option("password", "[PASSWORD]")
 .save())

Other External Sources
There are just some of the many external data sources Apache Spark can connect to;
other popular data sources include:

• Apache Cassandra
• Snowflake
• MongoDB

External Data Sources | 137

https://oreil.ly/j8XSa
https://oreil.ly/NJOii
https://oreil.ly/MK64A

Higher-Order Functions in DataFrames and Spark SQL
Because complex data types are amalgamations of simple data types, it is tempting to
manipulate them directly. There are two typical solutions for manipulating complex
data types:

• Exploding the nested structure into individual rows, applying some function, and
then re-creating the nested structure

• Building a user-defined function

These approaches have the benefit of allowing you to think of the problem in tabular
format. They typically involve (but are not limited to) using utility functions such as
get_json_object(), from_json(), to_json(), explode(), and selectExpr().

Let’s take a closer look at these two options.

Option 1: Explode and Collect
In this nested SQL statement, we first explode(values), which creates a new row
(with the id) for each element (value) within values:

-- In SQL
SELECT id, collect_list(value + 1) AS values
FROM (SELECT id, EXPLODE(values) AS value
 FROM table) x
GROUP BY id

While collect_list() returns a list of objects with duplicates, the GROUP BY state‐
ment requires shuffle operations, meaning the order of the re-collected array isn’t
necessarily the same as that of the original array. As values could be any number of
dimensions (a really wide and/or really long array) and we’re doing a GROUP BY, this
approach could be very expensive.

Option 2: User-Defined Function
To perform the same task (adding 1 to each element in values), we can also create a
UDF that uses map() to iterate through each element (value) and perform the addi‐
tion operation:

-- In SQL
SELECT id, collect_list(value + 1) AS values
FROM (SELECT id, EXPLODE(values) AS value
 FROM table) x
GROUP BY id

138 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/JL1UJ
https://oreil.ly/gF-0D

We could then use this UDF in Spark SQL as follows:

spark.sql("SELECT id, plusOneInt(values) AS values FROM table").show()

While this is better than using explode() and collect_list() as there won’t be any
ordering issues, the serialization and deserialization process itself may be expensive.
It’s also important to note, however, that collect_list() may cause executors to
experience out-of-memory issues for large data sets, whereas using UDFs would alle‐
viate these issues.

Built-in Functions for Complex Data Types
Instead of using these potentially expensive techniques, you may be able to use some
of the built-in functions for complex data types included as part of Apache Spark 2.4
and later. Some of the more common ones are listed in Table 5-3 (array types) and
Table 5-4 (map types); for the full list refer to this notebook in the Databricks
documentation.

Table 5-3. Array type functions

Function/Description Query Output
array_distinct(array<T>):

array<T>

Removes duplicates within an array

SELECT array_distinct(array(1,

2, 3, null, 3));

[1,2,3,null]

array_intersect(array<T>,

array<T>): array<T>

Returns the intersection of two arrays
without duplicates

SELECT array_inter

sect(array(1, 2, 3), array(1,

3, 5));

[1,3]

array_union(array<T>,

array<T>): array<T>

Returns the union of two arrays
without duplicates

SELECT array_union(array(1, 2,

3), array(1, 3, 5));

[1,2,3,5]

array_except(array<T>,

array<T>): array<T>

Returns elements in array1 but not
in array2, without duplicates

SELECT array_except(array(1,

2, 3), array(1, 3, 5));

[2]

array_join(array<String>,

String[, String]): String

Concatenates the elements of an array
using a delimiter

SELECT

array_join(array('hello',

'world'), ' ');

hello world

array_max(array<T>): T

Returns the maximum value within the
array; null elements are skipped

SELECT array_max(array(1, 20,

null, 3));

20

array_min(array<T>): T

Returns the minimum value within the
array; null elements are skipped

SELECT array_min(array(1, 20,

null, 3));

1

Higher-Order Functions in DataFrames and Spark SQL | 139

https://oreil.ly/GOJ5z

Function/Description Query Output
array_position(array<T>,

T): Long

Returns the (1-based) index of the first
element of the given array as a Long

SELECT array_position(array(3,

2, 1), 1);

3

array_remove(array<T>,

T): array<T>

Removes all elements that are equal to
the given element from the given array

SELECT array_remove(array(1,

2, 3, null, 3), 3);

[1,2,null]

arrays_overlap(array<T>,

array<T>): array<T>

Returns true if array1 contains at
least one non-null element also
present in array2

SELECT arrays_overlap(array(1,

2, 3), array(3, 4, 5));

true

array_sort(array<T>):

array<T>

Sorts the input array in ascending
order, with null elements placed at the
end of the array

SELECT array_sort(array('b',

'd', null, 'c', 'a'));

["a","b","c","d",null]

concat(array<T>, ...):

array<T>

Concatenates strings, binaries, arrays,
etc.

SELECT concat(array(1, 2, 3),

array(4, 5), array(6));

[1,2,3,4,5,6]

flatten(array<array<T>>):

array<T>

Flattens an array of arrays into a single
array

SELECT flatten(array(array(1,

2), array(3, 4)));

[1,2,3,4]

array_repeat(T, Int):

array<T>

Returns an array containing the
specified element the specified number
of times

SELECT array_repeat('123', 3); ["123","123","123"]

reverse(array<T>):

array<T>

Returns a reversed string or an array
with the reverse order of elements

SELECT reverse(array(2, 1, 4,

3));

[3,4,1,2]

sequence(T, T[, T]):

array<T>

Generates an array of elements from
start to stop (inclusive) by incremental
step

SELECT sequence(1, 5);

SELECT sequence(5, 1);

SELECT

sequence(to_date('2018-01-01'),

to_date('2018-03-01'), inter

val 1 month);

[1,2,3,4,5]

[5,4,3,2,1]

["2018-01-01",

"2018-02-01",

"2018-03-01"]

shuffle(array<T>):

array<T>

Returns a random permutation of the
given array

SELECT shuffle(array(1, 20,

null, 3));

[null,3,20,1]

140 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

Function/Description Query Output
slice(array<T>, Int,

Int): array<T>

Returns a subset of the given array
starting from the given index (counting
from the end if the index is negative),
of the specified length

SELECT slice(array(1, 2, 3,

4), -2, 2);

[3,4]

array_zip(array<T>,

array<U>, ...):

array<struct<T, U, ...>>

Returns a merged array of structs

SELECT arrays_zip(array(1, 2),

array(2, 3), array(3, 4));

[{"0":1,"1":2,"2":3},

{"0":2,"1":3,"2":4}]

element_at(array<T>,

Int): T /

Returns the element of the given array
at the given (1-based) index

SELECT element_at(array(1, 2,

3), 2);

2

cardinality(array<T>): Int

An alias of size; returns the size of
the given array or a map

SELECT cardinality(array('b',

'd', 'c', 'a'));

4

Table 5-4. Map functions

Function/Description Query Output
map_form_arrays(array<K>,

array<V>): map<K, V>

Creates a map from the given pair of key/value
arrays; elements in keys should not be null

SELECT

map_from_arrays(array(1.0,

3.0), array('2', '4'));

{"1.0":"2",

"3.0":"4"}

map_from_entries(array<struct<K,

V>>): map<K, V>

Returns a map created from the given array

SELECT

map_from_entries(array(struct(1,

'a'), struct(2, 'b')));

{"1":"a",

"2":"b"}

map_concat(map<K, V>, ...):

map<K, V>

Returns the union of the input maps

SELECT map_concat(map(1, 'a',

2, 'b'), map(2, 'c', 3, 'd'));

{"1":"a",

"2":"c","3":"d"}

element_at(map<K, V>, K): V

Returns the value of the given key, or null if
the key is not contained in the map

SELECT element_at(map(1, 'a',

2, 'b'), 2);

b

cardinality(array<T>): Int

An alias of size; returns the size of the given
array or a map

SELECT cardinality(map(1, 'a',

2, 'b'));

2

Higher-Order Functions
In addition to the previously noted built-in functions, there are higher-order func‐
tions that take anonymous lambda functions as arguments. An example of a higher-
order function is the following:

Higher-Order Functions in DataFrames and Spark SQL | 141

-- In SQL
transform(values, value -> lambda expression)

The transform() function takes an array (values) and anonymous function (lambda
expression) as input. The function transparently creates a new array by applying the
anonymous function to each element, and then assigning the result to the output
array (similar to the UDF approach, but more efficiently).

Let’s create a sample data set so we can run some examples:

In Python
from pyspark.sql.types import *
schema = StructType([StructField("celsius", ArrayType(IntegerType()))])

t_list = [[35, 36, 32, 30, 40, 42, 38]], [[31, 32, 34, 55, 56]]
t_c = spark.createDataFrame(t_list, schema)
t_c.createOrReplaceTempView("tC")

Show the DataFrame
t_c.show()

// In Scala
// Create DataFrame with two rows of two arrays (tempc1, tempc2)
val t1 = Array(35, 36, 32, 30, 40, 42, 38)
val t2 = Array(31, 32, 34, 55, 56)
val tC = Seq(t1, t2).toDF("celsius")
tC.createOrReplaceTempView("tC")

// Show the DataFrame
tC.show()

Here’s the output:

+--------------------+
| celsius|
+--------------------+
|[35, 36, 32, 30, ...|
|[31, 32, 34, 55, 56]|
+--------------------+

With the preceding DataFrame you can run the following higher-order function
queries.

transform()
transform(array<T>, function<T, U>): array<U>

The transform() function produces an array by applying a function to each element
of the input array (similar to a map() function):

// In Scala/Python
// Calculate Fahrenheit from Celsius for an array of temperatures
spark.sql("""
SELECT celsius,

142 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

 transform(celsius, t -> ((t * 9) div 5) + 32) as fahrenheit
 FROM tC
""").show()

+--------------------+--------------------+
| celsius| fahrenheit|
+--------------------+--------------------+
|[35, 36, 32, 30, ...|[95, 96, 89, 86, ...|
|[31, 32, 34, 55, 56]|[87, 89, 93, 131,...|
+--------------------+--------------------+

filter()
filter(array<T>, function<T, Boolean>): array<T>

The filter() function produces an array consisting of only the elements of the input
array for which the Boolean function is true:

// In Scala/Python
// Filter temperatures > 38C for array of temperatures
spark.sql("""
SELECT celsius,
 filter(celsius, t -> t > 38) as high
 FROM tC
""").show()

+--------------------+--------+
| celsius| high|
+--------------------+--------+
|[35, 36, 32, 30, ...|[40, 42]|
|[31, 32, 34, 55, 56]|[55, 56]|
+--------------------+--------+

exists()
exists(array<T>, function<T, V, Boolean>): Boolean

The exists() function returns true if the Boolean function holds for any element in
the input array:

// In Scala/Python
// Is there a temperature of 38C in the array of temperatures
spark.sql("""
SELECT celsius,
 exists(celsius, t -> t = 38) as threshold
 FROM tC
""").show()

+--------------------+---------+
| celsius|threshold|
+--------------------+---------+
|[35, 36, 32, 30, ...| true|

Higher-Order Functions in DataFrames and Spark SQL | 143

|[31, 32, 34, 55, 56]| false|
+--------------------+---------+

reduce()
reduce(array<T>, B, function<B, T, B>, function<B, R>)

The reduce() function reduces the elements of the array to a single value by merging
the elements into a buffer B using function<B, T, B> and applying a finishing
function<B, R> on the final buffer:

// In Scala/Python
// Calculate average temperature and convert to F
spark.sql("""
SELECT celsius,
 reduce(
 celsius,
 0,
 (t, acc) -> t + acc,
 acc -> (acc div size(celsius) * 9 div 5) + 32
) as avgFahrenheit
 FROM tC
""").show()

+--------------------+-------------+
| celsius|avgFahrenheit|
+--------------------+-------------+
|[35, 36, 32, 30, ...| 96|
|[31, 32, 34, 55, 56]| 105|
+--------------------+-------------+

Common DataFrames and Spark SQL Operations
Part of the power of Spark SQL comes from the wide range of DataFrame operations
(also known as untyped Dataset operations) it supports. The list of operations is quite
extensive and includes:

• Aggregate functions
• Collection functions
• Datetime functions
• Math functions
• Miscellaneous functions
• Non-aggregate functions
• Sorting functions
• String functions

144 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

• UDF functions
• Window functions

For the full list, see the Spark SQL documentation.

Within this chapter, we will focus on the following common relational operations:

• Unions and joins
• Windowing
• Modifications

To perform these DataFrame operations, we’ll first prepare some data. In the follow‐
ing code snippet, we:

1. Import two files and create two DataFrames, one for airport (airportsna) infor‐
mation and one for US flight delays (departureDelays).

2. Using expr(), convert the delay and distance columns from STRING to INT.
3. Create a smaller table, foo, that we can focus on for our demo examples; it con‐

tains only information on three flights originating from Seattle (SEA) to the des‐
tination of San Francisco (SFO) for a small time range.

Let’s get started:

// In Scala
import org.apache.spark.sql.functions._

// Set file paths
val delaysPath =
 "/databricks-datasets/learning-spark-v2/flights/departuredelays.csv"
val airportsPath =
 "/databricks-datasets/learning-spark-v2/flights/airport-codes-na.txt"

// Obtain airports data set
val airports = spark.read
 .option("header", "true")
 .option("inferschema", "true")
 .option("delimiter", "\t")
 .csv(airportsPath)
airports.createOrReplaceTempView("airports_na")

// Obtain departure Delays data set
val delays = spark.read
 .option("header","true")
 .csv(delaysPath)
 .withColumn("delay", expr("CAST(delay as INT) as delay"))
 .withColumn("distance", expr("CAST(distance as INT) as distance"))
delays.createOrReplaceTempView("departureDelays")

Common DataFrames and Spark SQL Operations | 145

https://oreil.ly/e1AYA

// Create temporary small table
val foo = delays.filter(
 expr("""origin == 'SEA' AND destination == 'SFO' AND
 date like '01010%' AND delay > 0"""))
foo.createOrReplaceTempView("foo")

In Python
Set file paths
from pyspark.sql.functions import expr
tripdelaysFilePath =
 "/databricks-datasets/learning-spark-v2/flights/departuredelays.csv"
airportsnaFilePath =
 "/databricks-datasets/learning-spark-v2/flights/airport-codes-na.txt"

Obtain airports data set
airportsna = (spark.read
 .format("csv")
 .options(header="true", inferSchema="true", sep="\t")
 .load(airportsnaFilePath))

airportsna.createOrReplaceTempView("airports_na")

Obtain departure delays data set
departureDelays = (spark.read
 .format("csv")
 .options(header="true")
 .load(tripdelaysFilePath))

departureDelays = (departureDelays
 .withColumn("delay", expr("CAST(delay as INT) as delay"))
 .withColumn("distance", expr("CAST(distance as INT) as distance")))

departureDelays.createOrReplaceTempView("departureDelays")

Create temporary small table
foo = (departureDelays
 .filter(expr("""origin == 'SEA' and destination == 'SFO' and
 date like '01010%' and delay > 0""")))
foo.createOrReplaceTempView("foo")

The departureDelays DataFrame contains data on >1.3M flights while the foo Data‐
Frame contains just three rows with information on flights from SEA to SFO for a
specific time range, as noted in the following output:

// Scala/Python
spark.sql("SELECT * FROM airports_na LIMIT 10").show()

+-----------+-----+-------+----+
| City|State|Country|IATA|
+-----------+-----+-------+----+
| Abbotsford| BC| Canada| YXX|
| Aberdeen| SD| USA| ABR|

146 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

Abilene	TX	USA	ABI
Akron	OH	USA	CAK
Alamosa	CO	USA	ALS
Albany	GA	USA	ABY
Albany	NY	USA	ALB
Albuquerque	NM	USA	ABQ
Alexandria	LA	USA	AEX
Allentown	PA	USA	ABE
+-----------+-----+-------+----+

spark.sql("SELECT * FROM departureDelays LIMIT 10").show()

+--------+-----+--------+------+-----------+
| date|delay|distance|origin|destination|
+--------+-----+--------+------+-----------+
01011245	6	602	ABE	ATL
01020600	-8	369	ABE	DTW
01021245	-2	602	ABE	ATL
01020605	-4	602	ABE	ATL
01031245	-4	602	ABE	ATL
01030605	0	602	ABE	ATL
01041243	10	602	ABE	ATL
01040605	28	602	ABE	ATL
01051245	88	602	ABE	ATL
01050605	9	602	ABE	ATL
+--------+-----+--------+------+-----------+

spark.sql("SELECT * FROM foo").show()

+--------+-----+--------+------+-----------+
| date|delay|distance|origin|destination|
+--------+-----+--------+------+-----------+
01010710	31	590	SEA	SFO
01010955	104	590	SEA	SFO
01010730	5	590	SEA	SFO
+--------+-----+--------+------+-----------+

In the following sections, we will execute union, join, and windowing examples with
this data.

Unions
A common pattern within Apache Spark is to union two different DataFrames with
the same schema together. This can be achieved using the union() method:

// Scala
// Union two tables
val bar = delays.union(foo)
bar.createOrReplaceTempView("bar")
bar.filter(expr("""origin == 'SEA' AND destination == 'SFO'
AND date LIKE '01010%' AND delay > 0""")).show()

Common DataFrames and Spark SQL Operations | 147

In Python
Union two tables
bar = departureDelays.union(foo)
bar.createOrReplaceTempView("bar")

Show the union (filtering for SEA and SFO in a specific time range)
bar.filter(expr("""origin == 'SEA' AND destination == 'SFO'
AND date LIKE '01010%' AND delay > 0""")).show()

The bar DataFrame is the union of foo with delays. Using the same filtering criteria
results in the bar DataFrame, we see a duplication of the foo data, as expected:

-- In SQL
spark.sql("""
SELECT *
 FROM bar
 WHERE origin = 'SEA'
 AND destination = 'SFO'
 AND date LIKE '01010%'
 AND delay > 0
""").show()

+--------+-----+--------+------+-----------+
| date|delay|distance|origin|destination|
+--------+-----+--------+------+-----------+
01010710	31	590	SEA	SFO
01010955	104	590	SEA	SFO
01010730	5	590	SEA	SFO
01010710	31	590	SEA	SFO
01010955	104	590	SEA	SFO
01010730	5	590	SEA	SFO
+--------+-----+--------+------+-----------+

Joins
A common DataFrame operation is to join two DataFrames (or tables) together. By
default, a Spark SQL join is an inner join, with the options being inner, cross,
outer, full, full_outer, left, left_outer, right, right_outer, left_semi, and
left_anti. More information is available in the documentation (this is applicable to
Scala as well as Python).

The following code sample performs the default of an inner join between the air
portsna and foo DataFrames:

// In Scala
foo.join(
 airports.as('air),
 $"air.IATA" === $"origin"
).select("City", "State", "date", "delay", "distance", "destination").show()

In Python
Join departure delays data (foo) with airport info

148 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

https://oreil.ly/CFEhb

foo.join(
 airports,
 airports.IATA == foo.origin
).select("City", "State", "date", "delay", "distance", "destination").show()

-- In SQL
spark.sql("""
SELECT a.City, a.State, f.date, f.delay, f.distance, f.destination
 FROM foo f
 JOIN airports_na a
 ON a.IATA = f.origin
""").show()

The preceding code allows you to view the date, delay, distance, and destination
information from the foo DataFrame joined to the city and state information from
the airports DataFrame:

+-------+-----+--------+-----+--------+-----------+
| City|State| date|delay|distance|destination|
+-------+-----+--------+-----+--------+-----------+
Seattle	WA	01010710	31	590	SFO
Seattle	WA	01010955	104	590	SFO
Seattle	WA	01010730	5	590	SFO
+-------+-----+--------+-----+--------+-----------+

Windowing
A window function uses values from the rows in a window (a range of input rows) to
return a set of values, typically in the form of another row. With window functions, it
is possible to operate on a group of rows while still returning a single value for every
input row. In this section, we will show how to use the dense_rank() window func‐
tion; there are many other functions, as noted in Table 5-5.

Table 5-5. Window functions

 SQL DataFrame API
Ranking functions rank() rank()

 dense_rank() denseRank()

 percent_rank() percentRank()

 ntile() ntile()

 row_number() rowNumber()

Analytic functions cume_dist() cumeDist()

 first_value() firstValue()

 last_value() lastValue()

 lag() lag()

 lead() lead()

Common DataFrames and Spark SQL Operations | 149

https://oreil.ly/PV7si

Let’s start with a review of the TotalDelays (calculated by sum(Delay)) experienced
by flights originating from Seattle (SEA), San Francisco (SFO), and New York City
(JFK) and going to a specific set of destination locations, as noted in the following
query:

-- In SQL
DROP TABLE IF EXISTS departureDelaysWindow;

CREATE TABLE departureDelaysWindow AS
SELECT origin, destination, SUM(delay) AS TotalDelays
 FROM departureDelays
 WHERE origin IN ('SEA', 'SFO', 'JFK')
 AND destination IN ('SEA', 'SFO', 'JFK', 'DEN', 'ORD', 'LAX', 'ATL')
 GROUP BY origin, destination;

SELECT * FROM departureDelaysWindow

+------+-----------+-----------+
|origin|destination|TotalDelays|
+------+-----------+-----------+
JFK	ORD	5608
SEA	LAX	9359
JFK	SFO	35619
SFO	ORD	27412
JFK	DEN	4315
SFO	DEN	18688
SFO	SEA	17080
SEA	SFO	22293
JFK	ATL	12141
SFO	ATL	5091
SEA	DEN	13645
SEA	ATL	4535
SEA	ORD	10041
JFK	SEA	7856
JFK	LAX	35755
SFO	JFK	24100
SFO	LAX	40798
SEA	JFK	4667
+------+-----------+-----------+

What if for each of these origin airports you wanted to find the three destinations that
experienced the most delays? You could achieve this by running three different quer‐
ies for each origin and then unioning the results together, like this:

-- In SQL
SELECT origin, destination, SUM(TotalDelays) AS TotalDelays
 FROM departureDelaysWindow
WHERE origin = '[ORIGIN]'
GROUP BY origin, destination
ORDER BY SUM(TotalDelays) DESC
LIMIT 3

150 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

where [ORIGIN] is the three different origin values of JFK, SEA, and SFO.

But a better approach would be to use a window function like dense_rank() to per‐
form the following calculation:

-- In SQL
spark.sql("""
SELECT origin, destination, TotalDelays, rank
 FROM (
 SELECT origin, destination, TotalDelays, dense_rank()
 OVER (PARTITION BY origin ORDER BY TotalDelays DESC) as rank
 FROM departureDelaysWindow
) t
 WHERE rank <= 3
""").show()

+------+-----------+-----------+----+
|origin|destination|TotalDelays|rank|
+------+-----------+-----------+----+
SEA	SFO	22293	1
SEA	DEN	13645	2
SEA	ORD	10041	3
SFO	LAX	40798	1
SFO	ORD	27412	2
SFO	JFK	24100	3
JFK	LAX	35755	1
JFK	SFO	35619	2
JFK	ATL	12141	3
+------+-----------+-----------+----+

By using the dense_rank() window function, we can quickly ascertain that the desti‐
nations with the worst delays for the three origin cities were:

• Seattle (SEA): San Francisco (SFO), Denver (DEN), and Chicago (ORD)
• San Francisco (SFO): Los Angeles (LAX), Chicago (ORD), and New York (JFK)
• New York (JFK): Los Angeles (LAX), San Francisco (SFO), and Atlanta (ATL)

It’s important to note that each window grouping needs to fit in a single executor and
will get composed into a single partition during execution. Therefore, you need to
ensure that your queries are not unbounded (i.e., limit the size of your window).

Modifications
Another common operation is to perform modifications to the DataFrame. While
DataFrames themselves are immutable, you can modify them through operations that
create new, different DataFrames, with different columns, for example. (Recall from
earlier chapters that the underlying RDDs are immutable—i.e., they cannot be

Common DataFrames and Spark SQL Operations | 151

changed—to ensure there is data lineage for Spark operations.) Let’s start with our
previous small DataFrame example:

// In Scala/Python
foo.show()

--------+-----+--------+------+-----------+
| date|delay|distance|origin|destination|
+--------+-----+--------+------+-----------+
01010710	31	590	SEA	SFO
01010955	104	590	SEA	SFO
01010730	5	590	SEA	SFO
+--------+-----+--------+------+-----------+

Adding new columns

To add a new column to the foo DataFrame, use the withColumn() method:

// In Scala
import org.apache.spark.sql.functions.expr
val foo2 = foo.withColumn(
 "status",
 expr("CASE WHEN delay <= 10 THEN 'On-time' ELSE 'Delayed' END")
)

In Python
from pyspark.sql.functions import expr
foo2 = (foo.withColumn(
 "status",
 expr("CASE WHEN delay <= 10 THEN 'On-time' ELSE 'Delayed' END")
))

The newly created foo2 DataFrame has the contents of the original foo DataFrame
plus the additional status column defined by the CASE statement:

// In Scala/Python
foo2.show()

+--------+-----+--------+------+-----------+-------+
| date|delay|distance|origin|destination| status|
+--------+-----+--------+------+-----------+-------+
01010710	31	590	SEA	SFO	Delayed
01010955	104	590	SEA	SFO	Delayed
01010730	5	590	SEA	SFO	On-time
+--------+-----+--------+------+-----------+-------+

Dropping columns

To drop a column, use the drop() method. For example, let’s remove the delay col‐
umn as we now have a status column, added in the previous section:

152 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

// In Scala
val foo3 = foo2.drop("delay")
foo3.show()

In Python
foo3 = foo2.drop("delay")
foo3.show()

+--------+--------+------+-----------+-------+
| date|distance|origin|destination| status|
+--------+--------+------+-----------+-------+
01010710	590	SEA	SFO	Delayed
01010955	590	SEA	SFO	Delayed
01010730	590	SEA	SFO	On-time
+--------+--------+------+-----------+-------+

Renaming columns

You can rename a column using the rename() method:

// In Scala
val foo4 = foo3.withColumnRenamed("status", "flight_status")
foo4.show()

In Python
foo4 = foo3.withColumnRenamed("status", "flight_status")
foo4.show()

+--------+--------+------+-----------+-------------+
| date|distance|origin|destination|flight_status|
+--------+--------+------+-----------+-------------+
01010710	590	SEA	SFO	Delayed
01010955	590	SEA	SFO	Delayed
01010730	590	SEA	SFO	On-time
+--------+--------+------+-----------+-------------+

Pivoting
When working with your data, sometimes you will need to swap the columns for the
rows—i.e., pivot your data. Let’s grab some data to demonstrate this concept:

-- In SQL
SELECT destination, CAST(SUBSTRING(date, 0, 2) AS int) AS month, delay
 FROM departureDelays
 WHERE origin = 'SEA'

+-----------+-----+-----+
|destination|month|delay|
+-----------+-----+-----+
ORD	1	92
JFK	1	-7
DFW	1	-5
MIA	1	-3

Common DataFrames and Spark SQL Operations | 153

https://oreil.ly/XXmqM

DFW	1	-3
DFW	1	1
ORD	1	-10
DFW	1	-6
DFW	1	-2
ORD	1	-3
+-----------+-----+-----+
only showing top 10 rows

Pivoting allows you to place names in the month column (instead of 1 and 2 you can
show Jan and Feb, respectively) as well as perform aggregate calculations (in this case
average and max) on the delays by destination and month:

-- In SQL
SELECT * FROM (
SELECT destination, CAST(SUBSTRING(date, 0, 2) AS int) AS month, delay
 FROM departureDelays WHERE origin = 'SEA'
)
PIVOT (
 CAST(AVG(delay) AS DECIMAL(4, 2)) AS AvgDelay, MAX(delay) AS MaxDelay
 FOR month IN (1 JAN, 2 FEB)
)
ORDER BY destination

+-----------+------------+------------+------------+------------+
|destination|JAN_AvgDelay|JAN_MaxDelay|FEB_AvgDelay|FEB_MaxDelay|
+-----------+------------+------------+------------+------------+
ABQ	19.86	316	11.42	69
ANC	4.44	149	7.90	141
ATL	11.98	397	7.73	145
AUS	3.48	50	-0.21	18
BOS	7.84	110	14.58	152
BUR	-2.03	56	-1.89	78
CLE	16.00	27	null	null
CLT	2.53	41	12.96	228
COS	5.32	82	12.18	203
CVG	-0.50	4	null	null
DCA	-1.15	50	0.07	34
DEN	13.13	425	12.95	625
DFW	7.95	247	12.57	356
DTW	9.18	107	3.47	77
EWR	9.63	236	5.20	212
FAI	1.84	160	4.21	60
FAT	1.36	119	5.22	232
FLL	2.94	54	3.50	40
GEG	2.28	63	2.87	60
HDN	-0.44	27	-6.50	0
+-----------+------------+------------+------------+------------+
only showing top 20 rows

154 | Chapter 5: Spark SQL and DataFrames: Interacting with External Data Sources

Summary
This chapter explored how Spark SQL interfaces with external components. We dis‐
cussed creating user-defined functions, including Pandas UDFs, and presented some
options for executing Spark SQL queries (including the Spark SQL shell, Beeline, and
Tableau). We then provided examples of how to use Spark SQL to connect with a
variety of external data sources, such as SQL databases, PostgreSQL, MySQL, Tableau,
Azure Cosmos DB, MS SQL Server, and others.

We explored Spark’s built-in functions for complex data types, and gave some exam‐
ples of working with higher-order functions. Finally, we discussed some common
relational operators and showed how to perform a selection of DataFrame operations.

In the next chapter, we explore how to work with Datasets, the benefits of strongly
typed operations, and when and why to use them.

Summary | 155

CHAPTER 6

Spark SQL and Datasets

In Chapters 4 and 5, we covered Spark SQL and the DataFrame API. We looked at
how to connect to built-in and external data sources, took a peek at the Spark SQL
engine, and explored topics such as the interoperability between SQL and Data‐
Frames, creating and managing views and tables, and advanced DataFrame and SQL
transformations.

Although we briefly introduced the Dataset API in Chapter 3, we skimmed over the
salient aspects of how Datasets—strongly typed distributed collections—are created,
stored, and serialized and deserialized in Spark.

In this chapter, we go under the hood to understand Datasets: we’ll explore working
with Datasets in Java and Scala, how Spark manages memory to accommodate Data‐
set constructs as part of the high-level API, and the costs associated with using
Datasets.

Single API for Java and Scala
As you may recall from Chapter 3 (Figure 3-1 and Table 3-6), Datasets offer a unified
and singular API for strongly typed objects. Among the languages supported by
Spark, only Scala and Java are strongly typed; hence, Python and R support only the
untyped DataFrame API.

Datasets are domain-specific typed objects that can be operated on in parallel using
functional programming or the DSL operators you’re familiar with from the Data‐
Frame API.

Thanks to this singular API, Java developers no longer risk lagging behind. For exam‐
ple, any future interface or behavior changes to Scala’s groupBy(), flatMap(), map(),

157

or filter() API will be the same for Java too, because it’s a singular interface that is
common to both implementations.

Scala Case Classes and JavaBeans for Datasets
If you recall from Chapter 3 (Table 3-2), Spark has internal data types, such as String
Type, BinaryType, IntegerType, BooleanType, and MapType, that it uses to map
seamlessly to the language-specific data types in Scala and Java during Spark opera‐
tions. This mapping is done via encoders, which we discuss later in this chapter.

In order to create Dataset[T], where T is your typed object in Scala, you need a case
class that defines the object. Using our example data from Chapter 3 (Table 3-1), say
we have a JSON file with millions of entries about bloggers writing about Apache
Spark in the following format:

{id: 1, first: "Jules", last: "Damji", url: "https://tinyurl.1", date:
"1/4/2016", hits: 4535, campaigns: {"twitter", "LinkedIn"}},
...
{id: 87, first: "Brooke", last: "Wenig", url: "https://tinyurl.2", date:
"5/5/2018", hits: 8908, campaigns: {"twitter", "LinkedIn"}}

To create a distributed Dataset[Bloggers], we must first define a Scala case class that
defines each individual field that comprises a Scala object. This case class serves as a
blueprint or schema for the typed object Bloggers:

// In Scala
case class Bloggers(id:Int, first:String, last:String, url:String, date:String,
hits: Int, campaigns:Array[String])

We can now read the file from the data source:

val bloggers = "../data/bloggers.json"
val bloggersDS = spark
 .read
 .format("json")
 .option("path", bloggers)
 .load()
 .as[Bloggers]

Each row in the resulting distributed data collection is of type Bloggers.

Similarly, you can create a JavaBean class of type Bloggers in Java and then use
encoders to create a Dataset<Bloggers>:

// In Java
import org.apache.spark.sql.Encoders;
import java.io.Serializable;

public class Bloggers implements Serializable {
 private int id;
 private String first;

158 | Chapter 6: Spark SQL and Datasets

https://oreil.ly/06xko
https://oreil.ly/06xko

 private String last;
 private String url;
 private String date;
 private int hits;
 private Array[String] campaigns;

// JavaBean getters and setters
int getID() { return id; }
void setID(int i) { id = i; }
String getFirst() { return first; }
void setFirst(String f) { first = f; }
String getLast() { return last; }
void setLast(String l) { last = l; }
String getURL() { return url; }
void setURL (String u) { url = u; }
String getDate() { return date; }
Void setDate(String d) { date = d; }
int getHits() { return hits; }
void setHits(int h) { hits = h; }

Array[String] getCampaigns() { return campaigns; }
void setCampaigns(Array[String] c) { campaigns = c; }
}

// Create Encoder
Encoder<Bloggers> BloggerEncoder = Encoders.bean(Bloggers.class);
String bloggers = "../bloggers.json"
Dataset<Bloggers>bloggersDS = spark
 .read
 .format("json")
 .option("path", bloggers)
 .load()
 .as(BloggerEncoder);

As you can see, creating Datasets in Scala and Java requires a bit of forethought, as
you have to know all the individual column names and types for the rows you are
reading. Unlike with DataFrames, where you can optionally let Spark infer the
schema, the Dataset API requires that you define your data types ahead of time and
that your case class or JavaBean class matches your schema.

The names of the fields in the Scala case class or Java class defini‐
tion must match the order in the data source. The column names
for each row in the data are automatically mapped to the corre‐
sponding names in the class and the types are automatically
preserved.

You may use an existing Scala case class or JavaBean class if the field names match
with your input data. Working with the Dataset API is as easy, concise, and
declarative as working with DataFrames. For most of the Dataset’s transformations,

Single API for Java and Scala | 159

you can use the same relational operators you’ve learned about in the previous
chapters.

Let’s examine some aspects of working with a sample Dataset.

Working with Datasets
One simple and dynamic way to create a sample Dataset is using a SparkSession
instance. In this scenario, for illustration purposes, we dynamically create a Scala
object with three fields: uid (unique ID for a user), uname (randomly generated user‐
name string), and usage (minutes of server or service usage).

Creating Sample Data
First, let’s generate some sample data:

// In Scala
import scala.util.Random._
// Our case class for the Dataset
case class Usage(uid:Int, uname:String, usage: Int)
val r = new scala.util.Random(42)
// Create 1000 instances of scala Usage class
// This generates data on the fly
val data = for (i <- 0 to 1000)
 yield (Usage(i, "user-" + r.alphanumeric.take(5).mkString(""),
 r.nextInt(1000)))
// Create a Dataset of Usage typed data
val dsUsage = spark.createDataset(data)
dsUsage.show(10)

+---+----------+-----+
|uid| uname|usage|
+---+----------+-----+
0	user-Gpi2C	525
1	user-DgXDi	502
2	user-M66yO	170
3	user-xTOn6	913
4	user-3xGSz	246
5	user-2aWRN	727
6	user-EzZY1	65
7	user-ZlZMZ	935
8	user-VjxeG	756
9	user-iqf1P	3
+---+----------+-----+
only showing top 10 rows

In Java the idea is similar, but we have to use explicit Encoders (in Scala, Spark han‐
dles this implicitly):

160 | Chapter 6: Spark SQL and Datasets

// In Java
import org.apache.spark.sql.Encoders;
import org.apache.commons.lang3.RandomStringUtils;
import java.io.Serializable;
import java.util.Random;
import java.util.ArrayList;
import java.util.List;

// Create a Java class as a Bean
public class Usage implements Serializable {
 int uid; // user id
 String uname; // username
 int usage; // usage

 public Usage(int uid, String uname, int usage) {
 this.uid = uid;
 this.uname = uname;
 this.usage = usage;
 }
 // JavaBean getters and setters
 public int getUid() { return this.uid; }
 public void setUid(int uid) { this.uid = uid; }
 public String getUname() { return this.uname; }
 public void setUname(String uname) { this.uname = uname; }
 public int getUsage() { return this.usage; }
 public void setUsage(int usage) { this.usage = usage; }

 public Usage() {
 }

 public String toString() {
 return "uid: '" + this.uid + "', uame: '" + this.uname + "',
 usage: '" + this.usage + "'";
 }
}

// Create an explicit Encoder
Encoder<Usage> usageEncoder = Encoders.bean(Usage.class);
Random rand = new Random();
rand.setSeed(42);
List<Usage> data = new ArrayList<Usage>()

// Create 1000 instances of Java Usage class
for (int i = 0; i < 1000; i++) {
 data.add(new Usage(i, "user" +
 RandomStringUtils.randomAlphanumeric(5),
 rand.nextInt(1000));

// Create a Dataset of Usage typed data
Dataset<Usage> dsUsage = spark.createDataset(data, usageEncoder);

Working with Datasets | 161

The generated Dataset between Scala and Java will differ because
the random seed algorithm may be different. Hence, your Scala’s
and Java’s query results will differ.

Now that we have our generated Dataset, dsUsage, let’s perform some of the common
transformations we have done in previous chapters.

Transforming Sample Data
Recall that Datasets are strongly typed collections of domain-specific objects. These
objects can be transformed in parallel using functional or relational operations.
Examples of these transformations include map(), reduce(), filter(), select(),
and aggregate(). As examples of higher-order functions, these methods can take
lambdas, closures, or functions as arguments and return the results. As such, they
lend themselves well to functional programming.

Scala is a functional programming language, and more recently lambdas, functional
arguments, and closures have been added to Java too. Let’s try a couple of higher-
order functions in Spark and use functional programming constructs with the sample
data we created earlier.

Higher-order functions and functional programming

For a simple example, let’s use filter() to return all the users in our dsUsage Dataset
whose usage exceeds 900 minutes. One way to do this is to use a functional expres‐
sion as an argument to the filter() method:

// In Scala
import org.apache.spark.sql.functions._
dsUsage
 .filter(d => d.usage > 900)
 .orderBy(desc("usage"))
 .show(5, false)

Another way is to define a function and supply that function as an argument to
filter():

def filterWithUsage(u: Usage) = u.usage > 900
dsUsage.filter(filterWithUsage(_)).orderBy(desc("usage")).show(5)

+---+----------+-----+
|uid| uname|usage|
+---+----------+-----+
561	user-5n2xY	999
113	user-nnAXr	999
605	user-NL6c4	999
634	user-L0wci	999

162 | Chapter 6: Spark SQL and Datasets

https://oreil.ly/KHaqt
https://oreil.ly/jvWtM

|805|user-LX27o| 996|
+---+----------+-----+
only showing top 5 rows

In the first case we used a lambda expression, {d.usage > 900}, as an argument to
the filter() method, whereas in the second case we defined a Scala function, def
filterWithUsage(u: Usage) = u.usage > 900. In both cases, the filter() method
iterates over each row of the Usage object in the distributed Dataset and applies the
expression or executes the function, returning a new Dataset of type Usage for rows
where the value of the expression or function is true. (See the Scala documentation
for method signature details.)

In Java, the argument to filter() is of type FilterFunction<T>. This can be defined
either inline anonymously or with a named function. For this example, we will define
our function by name and assign it to the variable f. Applying this function in
filter() will return a new Dataset with all the rows for which our filter condition is
true:

// In Java
// Define a Java filter function
FilterFunction<Usage> f = new FilterFunction<Usage>() {
 public boolean call(Usage u) {
 return (u.usage > 900);
 }
};

// Use filter with our function and order the results in descending order
dsUsage.filter(f).orderBy(col("usage").desc()).show(5);

+---+----------+-----+
|uid|uname |usage|
+---+----------+-----+
67	user-qCGvZ	997
878	user-J2HUU	994
668	user-pz2Lk	992
750	user-0zWqR	991
242	user-g0kF6	989
+---+----------+-----+
only showing top 5 rows

Not all lambdas or functional arguments must evaluate to Boolean values; they can
return computed values too. Consider this example using the higher-order function
map(), where our aim is to find out the usage cost for each user whose usage value is
over a certain threshold so we can offer those users a special price per minute.

// In Scala
// Use an if-then-else lambda expression and compute a value
dsUsage.map(u => {if (u.usage > 750) u.usage * .15 else u.usage * .50 })
 .show(5, false)
// Define a function to compute the usage

Working with Datasets | 163

https://oreil.ly/5yW8d
https://oreil.ly/PBNt4

def computeCostUsage(usage: Int): Double = {
 if (usage > 750) usage * 0.15 else usage * 0.50
}
// Use the function as an argument to map()
dsUsage.map(u => {computeCostUsage(u.usage)}).show(5, false)
+------+
|value |
+------+
|262.5 |
|251.0 |
|85.0 |
|136.95|
|123.0 |
+------+
only showing top 5 rows

To use map() in Java, you have to define a MapFunction<T>. This can either be an
anonymous class or a defined class that extends MapFunction<T>. For this example,
we use it inline—that is, in the method call itself:

// In Java
// Define an inline MapFunction
dsUsage.map((MapFunction<Usage, Double>) u -> {
 if (u.usage > 750)
 return u.usage * 0.15;
 else
 return u.usage * 0.50;
}, Encoders.DOUBLE()).show(5); // We need to explicitly specify the Encoder
+------+
|value |
+------+
|65.0 |
|114.45|
|124.0 |
|132.6 |
|145.5 |
+------+
only showing top 5 rows

Though we have computed values for the cost of usage, we don’t know which users
the computed values are associated with. How do we get this information?

The steps are simple:

1. Create a Scala case class or JavaBean class, UsageCost, with an additional field or
column named cost.

2. Define a function to compute the cost and use it in the map() method.

164 | Chapter 6: Spark SQL and Datasets

https://oreil.ly/BP0iY

Here’s what this looks like in Scala:

// In Scala
// Create a new case class with an additional field, cost
case class UsageCost(uid: Int, uname:String, usage: Int, cost: Double)

// Compute the usage cost with Usage as a parameter
// Return a new object, UsageCost
def computeUserCostUsage(u: Usage): UsageCost = {
 val v = if (u.usage > 750) u.usage * 0.15 else u.usage * 0.50
 UsageCost(u.uid, u.uname, u.usage, v)
}

// Use map() on our original Dataset
dsUsage.map(u => {computeUserCostUsage(u)}).show(5)

+---+----------+-----+------+
|uid| uname|usage| cost|
+---+----------+-----+------+
0	user-Gpi2C	525	262.5
1	user-DgXDi	502	251.0
2	user-M66yO	170	85.0
3	user-xTOn6	913	136.95
4	user-3xGSz	246	123.0
+---+----------+-----+------+
only showing top 5 rows

Now we have a transformed Dataset with a new column, cost, computed by the func‐
tion in our map() transformation, along with all the other columns.

Likewise, in Java, if we want the cost associated with each user we need to define a
JavaBean class UsageCost and MapFunction<T>. For the complete JavaBean example,
see the book’s GitHub repo; for brevity, we will only show the inline MapFunction<T>
here:

// In Java
// Get the Encoder for the JavaBean class
Encoder<UsageCost> usageCostEncoder = Encoders.bean(UsageCost.class);

// Apply map() function to our data
dsUsage.map((MapFunction<Usage, UsageCost>) u -> {
 double v = 0.0;
 if (u.usage > 750) v = u.usage * 0.15; else v = u.usage * 0.50;
 return new UsageCost(u.uid, u.uname,u.usage, v); },
 usageCostEncoder).show(5);

+------+---+----------+-----+
| cost|uid| uname|usage|
+------+---+----------+-----+
65.0	0	user-xSyzf	130
114.45	1	user-iOI72	763
124.0	2	user-QHRUk	248

Working with Datasets | 165

https://github.com/databricks/LearningSparkV2

| 132.6| 3|user-8GTjo| 884|
| 145.5| 4|user-U4cU1| 970|
+------+---+----------+-----+
only showing top 5 rows

There are a few things to observe about using higher-order functions and Datasets:

• We are using typed JVM objects as arguments to functions.
• We are using dot notation (from object-oriented programming) to access indi‐

vidual fields within the typed JVM object, making it easier to read.
• Some of our functions and lambda signatures can be type-safe, ensuring compile-

time error detection and instructing Spark what data types to work on, what
operations to perform, etc.

• Our code is readable, expressive, and concise, using Java or Scala language fea‐
tures in lambda expressions.

• Spark provides the equivalent of map() and filter() without higher-order func‐
tional constructs in both Java and Scala, so you are not forced to use functional
programming with Datasets or DataFrames. Instead, you can simply use condi‐
tional DSL operators or SQL expressions: for example, dsUsage.filter("usage
> 900") or dsUsage($"usage" > 900). (For more on this, see “Costs of Using
Datasets” on page 170.)

• For Datasets we use encoders, a mechanism to efficiently convert data between
JVM and Spark’s internal binary format for its data types (more on that in “Data‐
set Encoders” on page 168).

Higher-order functions and functional programming are not
unique to Spark Datasets; you can use them with DataFrames too.
Recall that a DataFrame is a Dataset[Row], where Row is a generic
untyped JVM object that can hold different types of fields. The
method signature takes expressions or functions that operate on
Row, meaning that each Row’s data type can be input value to the
expression or function.

Converting DataFrames to Datasets
For strong type checking of queries and constructs, you can convert DataFrames to
Datasets. To convert an existing DataFrame df to a Dataset of type SomeCaseClass,
simply use the df.as[SomeCaseClass] notation. We saw an example of this earlier:

166 | Chapter 6: Spark SQL and Datasets

1 For more details on how Spark manages memory, check out the references provided in the text and the pre‐
sentations “Apache Spark Memory Management” and “Deep Dive into Project Tungsten Bringing Spark
Closer to Bare Metal”.

// In Scala
val bloggersDS = spark
 .read
 .format("json")
 .option("path", "/data/bloggers/bloggers.json")
 .load()
 .as[Bloggers]

spark.read.format("json") returns a DataFrame<Row>, which in Scala is a type alias
for Dataset[Row]. Using .as[Bloggers] instructs Spark to use encoders, discussed
later in this chapter, to serialize/deserialize objects from Spark’s internal memory rep‐
resentation to JVM Bloggers objects.

Memory Management for Datasets and DataFrames
Spark is an intensive in-memory distributed big data engine, so its efficient use of
memory is crucial to its execution speed.1 Throughout its release history, Spark’s
usage of memory has significantly evolved:

• Spark 1.0 used RDD-based Java objects for memory storage, serialization, and
deserialization, which was expensive in terms of resources and slow. Also, storage
was allocated on the Java heap, so you were at the mercy of the JVM’s garbage
collection (GC) for large data sets.

• Spark 1.x introduced Project Tungsten. One of its prominent features was a new
internal row-based format to lay out Datasets and DataFrames in off-heap mem‐
ory, using offsets and pointers. Spark uses an efficient mechanism called encoders
to serialize and deserialize between the JVM and its internal Tungsten format.
Allocating memory off-heap means that Spark is less encumbered by GC.

• Spark 2.x introduced the second-generation Tungsten engine, featuring whole-
stage code generation and vectorized column-based memory layout. Built on
ideas and techniques from modern compilers, this new version also capitalized
on modern CPU and cache architectures for fast parallel data access with the
“single instruction, multiple data” (SIMD) approach.

Memory Management for Datasets and DataFrames | 167

https://oreil.ly/BlR_u
https://oreil.ly/YuH3a
https://oreil.ly/YuH3a
https://oreil.ly/sL56g
https://oreil.ly/wCQZB
https://oreil.ly/hmjz_

Dataset Encoders
Encoders convert data in off-heap memory from Spark’s internal Tungsten format to
JVM Java objects. In other words, they serialize and deserialize Dataset objects from
Spark’s internal format to JVM objects, including primitive data types. For example,
an Encoder[T] will convert from Spark’s internal Tungsten format to Dataset[T].

Spark has built-in support for automatically generating encoders for primitive types
(e.g., string, integer, long), Scala case classes, and JavaBeans. Compared to Java and
Kryo serialization and deserialization, Spark encoders are significantly faster.

In our earlier Java example, we explicitly created an encoder:

Encoder<UsageCost> usageCostEncoder = Encoders.bean(UsageCost.class);

However, for Scala, Spark automatically generates the bytecode for these efficient
converters. Let’s take a peek at Spark’s internal Tungsten row-based format.

Spark’s Internal Format Versus Java Object Format
Java objects have large overheads—header info, hashcode, Unicode info, etc. Even a
simple Java string such as “abcd” takes 48 bytes of storage, instead of the 4 bytes you
might expect. Imagine the overhead to create, for example, a MyClass(Int, String,
String) object.

Instead of creating JVM-based objects for Datasets or DataFrames, Spark allocates
off-heap Java memory to lay out their data and employs encoders to convert the data
from in-memory representation to JVM object. For example, Figure 6-1 shows how
the JVM object MyClass(Int, String, String) would be stored internally.

Figure 6-1. JVM object stored in contiguous off-heap Java memory managed by Spark

When data is stored in this contiguous manner and accessible through pointer arith‐
metic and offets, encoders can quickly serialize or deserialize that data. What does
that mean?

168 | Chapter 6: Spark SQL and Datasets

https://oreil.ly/zz-x9

Serialization and Deserialization (SerDe)
A concept not new in distributed computing, where data frequently travels over the
network among computer nodes in a cluster, serialization and deserialization is the
process by which a typed object is encoded (serialized) into a binary presentation or
format by the sender and decoded (deserialized) from binary format into its respec‐
tive data-typed object by the receiver.

For example, if the JVM object MyClass in Figure 6-1 had to be shared among nodes
in a Spark cluster, the sender would serialize it into an array of bytes, and the receiver
would deserialize it back into a JVM object of type MyClass.

The JVM has its own built-in Java serializer and deserializer, but it’s inefficient
because (as we saw in the previous section) the Java objects created by the JVM in the
heap memory are bloated. Hence, the process is slow.

This is where the Dataset encoders come to the rescue, for a few reasons:

• Spark’s internal Tungsten binary format (see Figures 6-1 and 6-2) stores objects
off the Java heap memory, and it’s compact so those objects occupy less space.

• Encoders can quickly serialize by traversing across the memory using simple
pointer arithmetic with memory addresses and offsets (Figure 6-2).

• On the receiving end, encoders can quickly deserialize the binary representation
into Spark’s internal representation. Encoders are not hindered by the JVM’s
garbage collection pauses.

Figure 6-2. Spark’s internal Tungsten row-based format

However, most good things in life come at a price, as we discuss next.

Dataset Encoders | 169

Costs of Using Datasets
In “DataFrames Versus Datasets” on page 74 in Chapter 3, we outlined some of the
benefits of using Datasets—but these benefits come at a cost. As noted in the
preceding section, when Datasets are passed to higher-order functions such as fil
ter(), map(), or flatMap() that take lambdas and functional arguments, there is a
cost associated with deserializing from Spark’s internal Tungsten format into the JVM
object.

Compared to other serializers used before encoders were introduced in Spark, this
cost is minor and tolerable. However, over larger data sets and many queries, this cost
accrues and can affect performance.

Strategies to Mitigate Costs
One strategy to mitigate excessive serialization and deserialization is to use
DSL expressions in your queries and avoid excessive use of lambdas as anonymous
functions as arguments to higher-order functions. Because lambdas are anonymous
and opaque to the Catalyst optimizer until runtime, when you use them it cannot effi‐
ciently discern what you’re doing (you’re not telling Spark what to do) and thus can‐
not optimize your queries (see “The Catalyst Optimizer” on page 77 in Chapter 3).

The second strategy is to chain your queries together in such a way that serialization
and deserialization is minimized. Chaining queries together is a common practice in
Spark.

Let’s illustrate with a simple example. Suppose we have a Dataset of type Person,
where Person is defined as a Scala case class:

// In Scala
Person(id: Integer, firstName: String, middleName: String, lastName: String,
gender: String, birthDate: String, ssn: String, salary: String)

We want to issue a set of queries to this Dataset, using functional programming.

Let’s examine a case where we compose a query inefficiently, in such a way that we
unwittingly incur the cost of repeated serialization and deserialization:

import java.util.Calendar
val earliestYear = Calendar.getInstance.get(Calendar.YEAR) - 40

personDS

 // Everyone above 40: lambda-1
 .filter(x => x.birthDate.split("-")(0).toInt > earliestYear)

 // Everyone earning more than 80K
 .filter($"salary" > 80000)

170 | Chapter 6: Spark SQL and Datasets

 // Last name starts with J: lambda-2
 .filter(x => x.lastName.startsWith("J"))

 // First name starts with D
 .filter($"firstName".startsWith("D"))
 .count()

As you can observe in Figure 6-3, each time we move from lambda to DSL (fil
ter($"salary" > 8000)) we incur the cost of serializing and deserializing the Person
JVM object.

Figure 6-3. An inefficient way to chain queries with lambdas and DSL

By contrast, the following query uses only DSL and no lambdas. As a result, it’s much
more efficient—no serialization/deserialization is required for the entire composed
and chained query:

personDS
 .filter(year($"birthDate") > earliestYear) // Everyone above 40
 .filter($"salary" > 80000) // Everyone earning more than 80K
 .filter($"lastName".startsWith("J")) // Last name starts with J
 .filter($"firstName".startsWith("D")) // First name starts with D
 .count()

For the curious, you can see the timing difference between the two runs in the note‐
book for this chapter in the book’s GitHub repo.

Costs of Using Datasets | 171

https://github.com/databricks/LearningSparkV2

Summary
In this chapter, we elaborated on how to work with Datasets in Java and Scala. We
explored how Spark manages memory to accommodate Dataset constructs as part of
its unified and high-level API, and we considered some of the costs associated with
using Datasets and how to mitigate those costs. We also showed you how to use Java
and Scala’s functional programming constructs in Spark.

Finally, we took a look under the hood at how encoders serialize and deserialize from
Spark’s internal Tungsten binary format to JVM objects.

In the next chapter, we’ll look at how to optimize Spark by examining efficient I/O
strategies, optimizing and tuning Spark configurations, and what attributes and sig‐
nals to look for while debugging Spark applications.

172 | Chapter 6: Spark SQL and Datasets

CHAPTER 7

Optimizing and Tuning Spark Applications

In the previous chapter, we elaborated on how to work with Datasets in Java and
Scala. We explored how Spark manages memory to accommodate Dataset constructs
as part of its unified and high-level API, and we considered the costs associated with
using Datasets and how to mitigate those costs.

Besides mitigating costs, we also want to consider how to optimize and tune Spark. In
this chapter, we will discuss a set of Spark configurations that enable optimizations,
look at Spark’s family of join strategies, and inspect the Spark UI, looking for clues to
bad behavior.

Optimizing and Tuning Spark for Efficiency
While Spark has many configurations for tuning, this book will only cover a handful
of the most important and commonly tuned configurations. For a comprehensive list
grouped by functional themes, you can peruse the documentation.

Viewing and Setting Apache Spark Configurations
There are three ways you can get and set Spark properties. The first is through a set of
configuration files. In your deployment’s $SPARK_HOME directory (where you installed
Spark), there are a number of config files: conf/spark-defaults.conf.template, conf/
log4j.properties.template, and conf/spark-env.sh.template. Changing the default values
in these files and saving them without the .template suffix instructs Spark to use these
new values.

173

https://oreil.ly/c7Y2q
https://oreil.ly/mifI7

Configuration changes in the conf/spark-defaults.conf file apply to
the Spark cluster and all Spark applications submitted to the
cluster.

The second way is to specify Spark configurations directly in your Spark application
or on the command line when submitting the application with spark-submit, using
the --conf flag:

spark-submit --conf spark.sql.shuffle.partitions=5 --conf
"spark.executor.memory=2g" --class main.scala.chapter7.SparkConfig_7_1 jars/main-
scala-chapter7_2.12-1.0.jar

Here’s how you would do this in the Spark application itself:

// In Scala
import org.apache.spark.sql.SparkSession

def printConfigs(session: SparkSession) = {
 // Get conf
 val mconf = session.conf.getAll
 // Print them
 for (k <- mconf.keySet) { println(s"${k} -> ${mconf(k)}\n") }
}

def main(args: Array[String]) {
 // Create a session
 val spark = SparkSession.builder
 .config("spark.sql.shuffle.partitions", 5)
 .config("spark.executor.memory", "2g")
 .master("local[*]")
 .appName("SparkConfig")
 .getOrCreate()

 printConfigs(spark)
 spark.conf.set("spark.sql.shuffle.partitions",
 spark.sparkContext.defaultParallelism)
 println(" ****** Setting Shuffle Partitions to Default Parallelism")
 printConfigs(spark)
}

spark.driver.host -> 10.8.154.34
spark.driver.port -> 55243
spark.app.name -> SparkConfig
spark.executor.id -> driver
spark.master -> local[*]
spark.executor.memory -> 2g
spark.app.id -> local-1580162894307
spark.sql.shuffle.partitions -> 5

174 | Chapter 7: Optimizing and Tuning Spark Applications

The third option is through a programmatic interface via the Spark shell. As with
everything else in Spark, APIs are the primary method of interaction. Through the
SparkSession object, you can access most Spark config settings.

In a Spark REPL, for example, this Scala code shows the Spark configs on a local host
where Spark is launched in local mode (for details on the different modes available,
see “Deployment modes” on page 12 in Chapter 1):

// In Scala
// mconf is a Map[String, String]
scala> val mconf = spark.conf.getAll
...
scala> for (k <- mconf.keySet) { println(s"${k} -> ${mconf(k)}\n") }

spark.driver.host -> 10.13.200.101
spark.driver.port -> 65204
spark.repl.class.uri -> spark://10.13.200.101:65204/classes
spark.jars ->
spark.repl.class.outputDir -> /private/var/folders/jz/qg062ynx5v39wwmfxmph5nn...
spark.app.name -> Spark shell
spark.submit.pyFiles ->
spark.ui.showConsoleProgress -> true
spark.executor.id -> driver
spark.submit.deployMode -> client
spark.master -> local[*]
spark.home -> /Users/julesdamji/spark/spark-3.0.0-preview2-bin-hadoop2.7
spark.sql.catalogImplementation -> hive
spark.app.id -> local-1580144503745

You can also view only the Spark SQL–specific Spark configs:

// In Scala
spark.sql("SET -v").select("key", "value").show(5, false)

In Python
spark.sql("SET -v").select("key", "value").show(n=5, truncate=False)

+--+-----------+
|key |value |
+--+-----------+
spark.sql.adaptive.enabled	false
spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin	0.2
spark.sql.adaptive.shuffle.fetchShuffleBlocksInBatch.enabled	true
spark.sql.adaptive.shuffle.localShuffleReader.enabled	true
spark.sql.adaptive.shuffle.maxNumPostShufflePartitions	<undefined>
+--+-----------+
only showing top 5 rows

Alternatively, you can access Spark’s current configuration through the Spark UI’s
Environment tab, which we discuss later in this chapter, as read-only values, as shown
in Figure 7-1.

Optimizing and Tuning Spark for Efficiency | 175

Figure 7-1. The Spark 3.0 UI’s Environment tab

To set or modify an existing configuration programmatically, first check if the prop‐
erty is modifiable. spark.conf.isModifiable("<config_name>") will return true or
false. All modifiable configs can be set to new values using the API:

// In Scala
scala> spark.conf.get("spark.sql.shuffle.partitions")
res26: String = 200
scala> spark.conf.set("spark.sql.shuffle.partitions", 5)
scala> spark.conf.get("spark.sql.shuffle.partitions")
res28: String = 5

In Python
>>> spark.conf.get("spark.sql.shuffle.partitions")
'200'
>>> spark.conf.set("spark.sql.shuffle.partitions", 5)
>>> spark.conf.get("spark.sql.shuffle.partitions")
'5'

Among all the ways that you can set Spark properties, an order of precedence deter‐
mines which values are honored. Any values or flags defined in spark-defaults.conf
will be read first, followed by those supplied on the command line with spark-
submit, and finally those set via SparkSession in the Spark application. All these
properties will be merged, with any duplicate properties reset in the Spark application
taking precedence. Likewise, values supplied on the command line will supersede set‐
tings in the configuration file, provided they are not overwritten in the application
itself.

Tweaking or supplying the right configurations helps with performance, as you’ll see
in the next section. The recommendations here are derived from practitioners’ obser‐
vations in the community and focus on how to maximize cluster resource utilization
for Spark to accommodate large-scale workloads.

176 | Chapter 7: Optimizing and Tuning Spark Applications

1 See “Tuning Apache Spark for Large Scale Workloads” and “Hive Bucketing in Apache Spark”.

Scaling Spark for Large Workloads
Large Spark workloads are often batch jobs—some run on a nightly basis, while some
are scheduled at regular intervals during the day. In either case, these jobs may pro‐
cess tens of terabytes of data or more. To avoid job failures due to resource starvation
or gradual performance degradation, there are a handful of Spark configurations that
you can enable or alter. These configurations affect three Spark components: the
Spark driver, the executor, and the shuffle service running on the executor.

The Spark driver’s responsibility is to coordinate with the cluster manager to launch
executors in a cluster and schedule Spark tasks on them. With large workloads, you
may have hundreds of tasks. This section explains a few configurations you can tweak
or enable to optimize your resource utilization, parallelize tasks, and avoid bottle‐
necks for large numbers of tasks. Some of the optimization ideas and insights have
been derived from big data companies like Facebook that use Spark at terabyte scale,
which they shared with the Spark community at the Spark + AI Summit.1

Static versus dynamic resource allocation

When you specify compute resources as command-line arguments to spark-submit,
as we did earlier, you cap the limit. This means that if more resources are needed later
as tasks queue up in the driver due to a larger than anticipated workload, Spark can‐
not accommodate or allocate extra resources.

If instead you use Spark’s dynamic resource allocation configuration, the Spark driver
can request more or fewer compute resources as the demand of large workloads flows
and ebbs. In scenarios where your workloads are dynamic—that is, they vary in their
demand for compute capacity—using dynamic allocation helps to accommodate sud‐
den peaks.

One use case where this can be helpful is streaming, where the data flow volume may
be uneven. Another is on-demand data analytics, where you might have a high vol‐
ume of SQL queries during peak hours. Enabling dynamic resource allocation allows
Spark to achieve better utilization of resources, freeing executors when not in use and
acquiring new ones when needed.

As well as when working with large or varying workloads, dynamic
allocation is also useful in a multitenant environment, where Spark
may be deployed alongside other applications or services in YARN,
Mesos, or Kubernetes. Be advised, however, that Spark’s shifting
resource demands may impact other applications demanding
resources at the same time.

Optimizing and Tuning Spark for Efficiency | 177

https://oreil.ly/cT8Az
https://oreil.ly/S2hTU
https://oreil.ly/FX8wl
https://oreil.ly/Hqtip

To enable and configure dynamic allocation, you can use settings like the following.
Note that the numbers here are arbitrary; the appropriate settings will depend on the
nature of your workload and they should be adjusted accordingly. Some of these
configs cannot be set inside a Spark REPL, so you will have to set them
programmatically:

spark.dynamicAllocation.enabled true
spark.dynamicAllocation.minExecutors 2
spark.dynamicAllocation.schedulerBacklogTimeout 1m
spark.dynamicAllocation.maxExecutors 20
spark.dynamicAllocation.executorIdleTimeout 2min

By default spark.dynamicAllocation.enabled is set to false. When enabled with
the settings shown here, the Spark driver will request that the cluster manager create
two executors to start with, as a minimum (spark.dynamicAllocation.minExecu
tors). As the task queue backlog increases, new executors will be requested each time
the backlog timeout (spark.dynamicAllocation.schedulerBacklogTimeout) is
exceeded. In this case, whenever there are pending tasks that have not been scheduled
for over 1 minute, the driver will request that a new executor be launched to schedule
backlogged tasks, up to a maximum of 20 (spark.dynamicAllocation.maxExecu
tors). By contrast, if an executor finishes a task and is idle for 2 minutes
(spark.dynamicAllocation.executorIdleTimeout), the Spark driver will terminate
it.

Configuring Spark executors’ memory and the shuffle service
Simply enabling dynamic resource allocation is not sufficient. You also have to under‐
stand how executor memory is laid out and used by Spark so that executors are not
starved of memory or troubled by JVM garbage collection.

The amount of memory available to each executor is controlled by
spark.executor.memory. This is divided into three sections, as depicted in
Figure 7-2: execution memory, storage memory, and reserved memory. The default
division is 60% for execution memory and 40% for storage, after allowing for 300 MB
for reserved memory, to safeguard against OOM errors. The Spark documentation
advises that this will work for most cases, but you can adjust what fraction of
spark.executor.memory you want either section to use as a baseline. When storage
memory is not being used, Spark can acquire it for use in execution memory for exe‐
cution purposes, and vice versa.

178 | Chapter 7: Optimizing and Tuning Spark Applications

https://oreil.ly/ECABs

Figure 7-2. Executor memory layout

Execution memory is used for Spark shuffles, joins, sorts, and aggregations. Since dif‐
ferent queries may require different amounts of memory, the fraction (spark.mem
ory.fraction is 0.6 by default) of the available memory to dedicate to this can be
tricky to tune but it’s easy to adjust. By contrast, storage memory is primarily used for
caching user data structures and partitions derived from DataFrames.

During map and shuffle operations, Spark writes to and reads from the local disk’s
shuffle files, so there is heavy I/O activity. This can result in a bottleneck, because the
default configurations are suboptimal for large-scale Spark jobs. Knowing what con‐
figurations to tweak can mitigate this risk during this phase of a Spark job.

In Table 7-1, we capture a few recommended configurations to adjust so that the map,
spill, and merge processes during these operations are not encumbered by inefficient
I/O and to enable these operations to employ buffer memory before writing the final
shuffle partitions to disk. Tuning the shuffle service running on each executor can
also aid in increasing overall performance for large Spark workloads.

Optimizing and Tuning Spark for Efficiency | 179

https://oreil.ly/4o_pV

Table 7-1. Spark configurations to tweak for I/O during map and shuffle operations

Configuration Default value, recommendation, and description
spark.driver.memory Default is 1g (1 GB). This is the amount of memory allocated to the Spark

driver to receive data from executors. This is often changed during spark-
submit with --driver-memory.
Only change this if you expect the driver to receive large amounts of data
back from operations like collect(), or if you run out of driver memory.

spark.shuffle.file.buffer Default is 32 KB. Recommended is 1 MB. This allows Spark to do more
buffering before writing final map results to disk.

spark.file.transferTo Default is true. Setting it to false will force Spark to use the file buffer to
transfer files before finally writing to disk; this will decrease the I/O activity.

spark.shuffle.unsafe.file.out

put.buffer

Default is 32 KB. This controls the amount of buffering possible when
merging files during shuffle operations. In general, large values (e.g., 1 MB)
are more appropriate for larger workloads, whereas the default can work for
smaller workloads.

spark.io.compression.lz4.block

Size

Default is 32 KB. Increase to 512 KB. You can decrease the size of the shuffle
file by increasing the compressed size of the block.

spark.shuffle.service.

index.cache.size

Default is 100m. Cache entries are limited to the specified memory footprint
in byte.

spark.shuffle.registration.

timeout

Default is 5000 ms. Increase to 120000 ms.

spark.shuffle.registration.max

Attempts

Default is 3. Increase to 5 if needed.

The recommendations in this table won’t work for all situations,
but they should give you an idea of how to adjust these configura‐
tions based on your workload. Like with everything else in perfor‐
mance tuning, you have to experiment until you find the right
balance.

Maximizing Spark parallelism
Much of Spark’s efficiency is due to its ability to run multiple tasks in parallel at scale.
To understand how you can maximize parallelism—i.e., read and process as much
data in parallel as possible—you have to look into how Spark reads data into memory
from storage and what partitions mean to Spark.

In data management parlance, a partition is a way to arrange data into a subset of
configurable and readable chunks or blocks of contiguous data on disk. These subsets
of data can be read or processed independently and in parallel, if necessary, by more
than a single thread in a process. This independence matters because it allows for
massive parallelism of data processing.

Spark is embarrassingly efficient at processing its tasks in parallel. As you learned in
Chapter 2, for large-scale workloads a Spark job will have many stages, and within

180 | Chapter 7: Optimizing and Tuning Spark Applications

each stage there will be many tasks. Spark will at best schedule a thread per task per
core, and each task will process a distinct partition. To optimize resource utilization
and maximize parallelism, the ideal is at least as many partitions as there are cores on
the executor, as depicted in Figure 7-3. If there are more partitions than there are
cores on each executor, all the cores are kept busy. You can think of partitions as
atomic units of parallelism: a single thread running on a single core can work on a
single partition.

Figure 7-3. Relationship of Spark tasks, cores, partitions, and parallelism

How partitions are created. As mentioned previously, Spark’s tasks process data as par‐
titions read from disk into memory. Data on disk is laid out in chunks or contiguous
file blocks, depending on the store. By default, file blocks on data stores range in size
from 64 MB to 128 MB. For example, on HDFS and S3 the default size is 128 MB
(this is configurable). A contiguous collection of these blocks constitutes a partition.

The size of a partition in Spark is dictated by spark.sql.files.maxPartitionBytes.
The default is 128 MB. You can decrease the size, but that may result in what’s known
as the “small file problem”—many small partition files, introducing an inordinate
amount of disk I/O and performance degradation thanks to filesystem operations
such as opening, closing, and listing directories, which on a distributed filesystem can
be slow.

Partitions are also created when you explicitly use certain methods of the DataFrame
API. For example, while creating a large DataFrame or reading a large file from disk,
you can explicitly instruct Spark to create a certain number of partitions:

Optimizing and Tuning Spark for Efficiency | 181

2 For some tips on configuring shuffle partitions, see “Tuning Apache Spark for Large Scale Workloads”, “Hive
Bucketing in Apache Spark”, and “Why You Should Care about Data Layout in the Filesystem”.

// In Scala
val ds = spark.read.textFile("../README.md").repartition(16)
ds: org.apache.spark.sql.Dataset[String] = [value: string]

ds.rdd.getNumPartitions
res5: Int = 16

val numDF = spark.range(1000L * 1000 * 1000).repartition(16)
numDF.rdd.getNumPartitions

numDF: org.apache.spark.sql.Dataset[Long] = [id: bigint]
res12: Int = 16

Finally, shuffle partitions are created during the shuffle stage. By default, the number
of shuffle partitions is set to 200 in spark.sql.shuffle.partitions. You can adjust
this number depending on the size of the data set you have, to reduce the amount of
small partitions being sent across the network to executors’ tasks.

The default value for spark.sql.shuffle.partitions is too high
for smaller or streaming workloads; you may want to reduce it to a
lower value such as the number of cores on the executors or less.

Created during operations like groupBy() or join(), also known as wide transforma‐
tions, shuffle partitions consume both network and disk I/O resources. During these
operations, the shuffle will spill results to executors’ local disks at the location speci‐
fied in spark.local.directory. Having performant SSD disks for this operation will
boost the performance.

There is no magic formula for the number of shuffle partitions to set for the shuffle
stage; the number may vary depending on your use case, data set, number of cores,
and the amount of executor memory available—it’s a trial-and-error approach.2

In addition to scaling Spark for large workloads, to boost your performance you’ll
want to consider caching or persisting your frequently accessed DataFrames or tables.
We explore various caching and persistence options in the next section.

182 | Chapter 7: Optimizing and Tuning Spark Applications

https://oreil.ly/QpVyf
https://oreil.ly/RmiTd
https://oreil.ly/RmiTd
https://oreil.ly/RQQFf

Caching and Persistence of Data
What is the difference between caching and persistence? In Spark they are synony‐
mous. Two API calls, cache() and persist(), offer these capabilities. The latter pro‐
vides more control over how and where your data is stored—in memory and on disk,
serialized and unserialized. Both contribute to better performance for frequently
accessed DataFrames or tables.

DataFrame.cache()
cache() will store as many of the partitions read in memory across Spark executors
as memory allows (see Figure 7-2). While a DataFrame may be fractionally cached,
partitions cannot be fractionally cached (e.g., if you have 8 partitions but only 4.5
partitions can fit in memory, only 4 will be cached). However, if not all your parti‐
tions are cached, when you want to access the data again, the partitions that are not
cached will have to be recomputed, slowing down your Spark job.

Let’s look at an example of how caching a large DataFrame improves performance
when accessing a DataFrame:

// In Scala
// Create a DataFrame with 10M records
val df = spark.range(1 * 10000000).toDF("id").withColumn("square", $"id" * $"id")
df.cache() // Cache the data
df.count() // Materialize the cache

res3: Long = 10000000
Command took 5.11 seconds

df.count() // Now get it from the cache
res4: Long = 10000000
Command took 0.44 seconds

The first count() materializes the cache, whereas the second one accesses the cache,
resulting in a close to 12 times faster access time for this data set.

When you use cache() or persist(), the DataFrame is not fully
cached until you invoke an action that goes through every record
(e.g., count()). If you use an action like take(1), only one parti‐
tion will be cached because Catalyst realizes that you do not need
to compute all the partitions just to retrieve one record.

Observing how a DataFrame is stored across one executor on a local host, as dis‐
played in Figure 7-4, we can see they all fit in memory (recall that at a low level Data‐
Frames are backed by RDDs).

Caching and Persistence of Data | 183

Figure 7-4. Cache distributed across 12 partitions in executor memory

DataFrame.persist()
persist(StorageLevel.LEVEL) is nuanced, providing control over how your data is
cached via StorageLevel. Table 7-2 summarizes the different storage levels. Data on
disk is always serialized using either Java or Kryo serialization.

184 | Chapter 7: Optimizing and Tuning Spark Applications

https://oreil.ly/gz6Bb
https://oreil.ly/NIL6a

Table 7-2. StorageLevels

StorageLevel Description
MEMORY_ONLY Data is stored directly as objects and stored only in memory.

MEMORY_ONLY_SER Data is serialized as compact byte array representation and stored only in memory. To use
it, it has to be deserialized at a cost.

MEMORY_AND_DISK Data is stored directly as objects in memory, but if there’s insufficient memory the rest is
serialized and stored on disk.

DISK_ONLY Data is serialized and stored on disk.

OFF_HEAP Data is stored off-heap. Off-heap memory is used in Spark for storage and query execution;
see “Configuring Spark executors’ memory and the shuffle service” on page 178.

MEMORY_AND_DISK_SER Like MEMORY_AND_DISK, but data is serialized when stored in memory. (Data is always
serialized when stored on disk.)

Each StorageLevel (except OFF_HEAP) has an equivalent
LEVEL_NAME_2, which means replicate twice on two different Spark
executors: MEMORY_ONLY_2, MEMORY_AND_DISK_SER_2, etc. While
this option is expensive, it allows data locality in two places, pro‐
viding fault tolerance and giving Spark the option to schedule a
task local to a copy of the data.

Let’s look at the same example as in the previous section, but using the persist()
method:

// In Scala
import org.apache.spark.storage.StorageLevel

// Create a DataFrame with 10M records
val df = spark.range(1 * 10000000).toDF("id").withColumn("square", $"id" * $"id")
df.persist(StorageLevel.DISK_ONLY) // Serialize the data and cache it on disk
df.count() // Materialize the cache

res2: Long = 10000000
Command took 2.08 seconds

df.count() // Now get it from the cache
res3: Long = 10000000
Command took 0.38 seconds

As you can see from Figure 7-5, the data is persisted on disk, not in memory. To
unpersist your cached data, just call DataFrame.unpersist().

Caching and Persistence of Data | 185

https://oreil.ly/a69L0

Figure 7-5. Cache distributed across 12 partitions in executor disk

Finally, not only can you cache DataFrames, but you can also cache the tables or
views derived from DataFrames. This gives them more readable names in the Spark
UI. For example:

// In Scala
df.createOrReplaceTempView("dfTable")
spark.sql("CACHE TABLE dfTable")
spark.sql("SELECT count(*) FROM dfTable").show()

+--------+
|count(1)|
+--------+
|10000000|
+--------+

Command took 0.56 seconds

186 | Chapter 7: Optimizing and Tuning Spark Applications

When to Cache and Persist
Common use cases for caching are scenarios where you will want to access a large
data set repeatedly for queries or transformations. Some examples include:

• DataFrames commonly used during iterative machine learning training
• DataFrames accessed commonly for doing frequent transformations during ETL

or building data pipelines

When Not to Cache and Persist
Not all use cases dictate the need to cache. Some scenarios that may not warrant cach‐
ing your DataFrames include:

• DataFrames that are too big to fit in memory
• An inexpensive transformation on a DataFrame not requiring frequent use,

regardless of size

As a general rule you should use memory caching judiciously, as it can incur resource
costs in serializing and deserializing, depending on the StorageLevel used.

Next, we’ll shift our focus to discuss a couple of common Spark join operations that
trigger expensive movement of data, demanding compute and network resources
from the cluster, and how we can alleviate this movement by organizing the data.

A Family of Spark Joins
Join operations are a common type of transformation in big data analytics in which
two data sets, in the form of tables or DataFrames, are merged over a common
matching key. Similar to relational databases, the Spark DataFrame and Dataset APIs
and Spark SQL offer a series of join transformations: inner joins, outer joins, left
joins, right joins, etc. All of these operations trigger a large amount of data movement
across Spark executors.

At the heart of these transformations is how Spark computes what data to produce,
what keys and associated data to write to the disk, and how to transfer those keys and
data to nodes as part of operations like groupBy(), join(), agg(), sortBy(), and
reduceByKey(). This movement is commonly referred to as the shuffle.

Spark has five distinct join strategies by which it exchanges, moves, sorts, groups, and
merges data across executors: the broadcast hash join (BHJ), shuffle hash join (SHJ),
shuffle sort merge join (SMJ), broadcast nested loop join (BNLJ), and shuffle-and-
replicated nested loop join (a.k.a. Cartesian product join). We’ll focus on only two of
these here (BHJ and SMJ), because they’re the most common ones you’ll encounter.

A Family of Spark Joins | 187

https://oreil.ly/q-KvH

Broadcast Hash Join
Also known as a map-side-only join, the broadcast hash join is employed when two
data sets, one small (fitting in the driver’s and executor’s memory) and another large
enough to ideally be spared from movement, need to be joined over certain condi‐
tions or columns. Using a Spark broadcast variable, the smaller data set is broadcas‐
ted by the driver to all Spark executors, as shown in Figure 7-6, and subsequently
joined with the larger data set on each executor. This strategy avoids the large
exchange.

Figure 7-6. BHJ: the smaller data set is broadcast to all executors

By default Spark will use a broadcast join if the smaller data set is less than 10 MB.
This configuration is set in spark.sql.autoBroadcastJoinThreshold; you can
decrease or increase the size depending on how much memory you have on each
executor and in the driver. If you are confident that you have enough memory you
can use a broadcast join with DataFrames larger than 10 MB (even up to 100 MB).

A common use case is when you have a common set of keys between two Data‐
Frames, one holding less information than the other, and you need a merged view of
both. For example, consider a simple case where you have a large data set of soccer
players around the world, playersDF, and a smaller data set of soccer clubs they play
for, clubsDF, and you wish to join them over a common key:

// In Scala
import org.apache.spark.sql.functions.broadcast
val joinedDF = playersDF.join(broadcast(clubsDF), "key1 === key2")

188 | Chapter 7: Optimizing and Tuning Spark Applications

https://oreil.ly/ersei

In this code we are forcing Spark to do a broadcast join, but it will
resort to this type of join by default if the size of the smaller data set
is below the spark.sql.autoBroadcastJoinThreshold.

The BHJ is the easiest and fastest join Spark offers, since it does not involve any shuf‐
fle of the data set; all the data is available locally to the executor after a broadcast. You
just have to be sure that you have enough memory both on the Spark driver’s and the
executors’ side to hold the smaller data set in memory.

At any time after the operation, you can see in the physical plan what join operation
was performed by executing:

joinedDF.explain(mode)

In Spark 3.0, you can use joinedDF.explain('mode') to display a readable and
digestible output. The modes include 'simple', 'extended', 'codegen', 'cost', and
'formatted'.

When to use a broadcast hash join
Use this type of join under the following conditions for maximum benefit:

• When each key within the smaller and larger data sets is hashed to the same par‐
tition by Spark

• When one data set is much smaller than the other (and within the default config
of 10 MB, or more if you have sufficient memory)

• When you only want to perform an equi-join, to combine two data sets based on
matching unsorted keys

• When you are not worried by excessive network bandwidth usage or OOM
errors, because the smaller data set will be broadcast to all Spark executors

Specifying a value of -1 in spark.sql.autoBroadcastJoinThreshold will cause
Spark to always resort to a shuffle sort merge join, which we discuss in the next
section.

Shuffle Sort Merge Join
The sort-merge algorithm is an efficient way to merge two large data sets over a com‐
mon key that is sortable, unique, and can be assigned to or stored in the same parti‐
tion—that is, two data sets with a common hashable key that end up being on the
same partition. From Spark’s perspective, this means that all rows within each data set
with the same key are hashed on the same partition on the same executor. Obviously,
this means data has to be colocated or exchanged between executors.

A Family of Spark Joins | 189

As the name indicates, this join scheme has two phases: a sort phase followed by a
merge phase. The sort phase sorts each data set by its desired join key; the merge
phase iterates over each key in the row from each data set and merges the rows if the
two keys match.

By default, the SortMergeJoin is enabled via spark.sql.join.preferSortMerge
Join. Here is a code snippet from a notebook of standalone applications available for
this chapter in the book’s GitHub repo. The main idea is to take two large Data‐
Frames, with one million records, and join them on two common keys, uid ==
users_id.

This data is synthetic but illustrates the point:

// In Scala
import scala.util.Random
// Show preference over other joins for large data sets
// Disable broadcast join
// Generate data
...
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", "-1")

// Generate some sample data for two data sets
var states = scala.collection.mutable.Map[Int, String]()
var items = scala.collection.mutable.Map[Int, String]()
val rnd = new scala.util.Random(42)

// Initialize states and items purchased
states += (0 -> "AZ", 1 -> "CO", 2-> "CA", 3-> "TX", 4 -> "NY", 5-> "MI")
items += (0 -> "SKU-0", 1 -> "SKU-1", 2-> "SKU-2", 3-> "SKU-3", 4 -> "SKU-4",
 5-> "SKU-5")

// Create DataFrames
val usersDF = (0 to 1000000).map(id => (id, s"user_${id}",
 s"user_${id}@databricks.com", states(rnd.nextInt(5))))
 .toDF("uid", "login", "email", "user_state")
val ordersDF = (0 to 1000000)
 .map(r => (r, r, rnd.nextInt(10000), 10 * r* 0.2d,
 states(rnd.nextInt(5)), items(rnd.nextInt(5))))
 .toDF("transaction_id", "quantity", "users_id", "amount", "state", "items")

// Do the join
val usersOrdersDF = ordersDF.join(usersDF, $"users_id" === $"uid")

// Show the joined results
usersOrdersDF.show(false)

+--------------+--------+--------+--------+-----+-----+---+---+----------+
|transaction_id|quantity|users_id|amount |state|items|uid|...|user_state|
+--------------+--------+--------+--------+-----+-----+---+---+----------+
|3916 |3916 |148 |7832.0 |CA |SKU-1|148|...|CO |
|36384 |36384 |148 |72768.0 |NY |SKU-2|148|...|CO |

190 | Chapter 7: Optimizing and Tuning Spark Applications

https://github.com/databricks/LearningSparkV2

41839	41839	148	83678.0	CA	SKU-3	148	...	CO
48212	48212	148	96424.0	CA	SKU-4	148	...	CO
48484	48484	148	96968.0	TX	SKU-3	148	...	CO
50514	50514	148	101028.0	CO	SKU-0	148	...	CO
65694	65694	148	131388.0	TX	SKU-4	148	...	CO
65723	65723	148	131446.0	CA	SKU-1	148	...	CO
93125	93125	148	186250.0	NY	SKU-3	148	...	CO
107097	107097	148	214194.0	TX	SKU-2	148	...	CO
111297	111297	148	222594.0	AZ	SKU-3	148	...	CO
117195	117195	148	234390.0	TX	SKU-4	148	...	CO
253407	253407	148	506814.0	NY	SKU-4	148	...	CO
267180	267180	148	534360.0	AZ	SKU-0	148	...	CO
283187	283187	148	566374.0	AZ	SKU-3	148	...	CO
289245	289245	148	578490.0	AZ	SKU-0	148	...	CO
314077	314077	148	628154.0	CO	SKU-3	148	...	CO
322170	322170	148	644340.0	TX	SKU-3	148	...	CO
344627	344627	148	689254.0	NY	SKU-3	148	...	CO
345611	345611	148	691222.0	TX	SKU-3	148	...	CO
+--------------+--------+--------+--------+-----+-----+---+---+----------+
only showing top 20 rows

Examining our final execution plan, we notice that Spark employed a SortMergeJoin,
as expected, to join the two DataFrames. The Exchange operation is the shuffle of the
results of the map operation on each executor:

usersOrdersDF.explain()

== Physical Plan ==
InMemoryTableScan [transaction_id#40, quantity#41, users_id#42, amount#43,
state#44, items#45, uid#13, login#14, email#15, user_state#16]
 +- InMemoryRelation [transaction_id#40, quantity#41, users_id#42, amount#43,
state#44, items#45, uid#13, login#14, email#15, user_state#16],
StorageLevel(disk, memory, deserialized, 1 replicas)
 +- *(3) SortMergeJoin [users_id#42], [uid#13], Inner
 :- *(1) Sort [users_id#42 ASC NULLS FIRST], false, 0
 : +- Exchange hashpartitioning(users_id#42, 16), true, [id=#56]
 : +- LocalTableScan [transaction_id#40, quantity#41, users_id#42,
amount#43, state#44, items#45]
 +- *(2) Sort [uid#13 ASC NULLS FIRST], false, 0
 +- Exchange hashpartitioning(uid#13, 16), true, [id=#57]
 +- LocalTableScan [uid#13, login#14, email#15, user_state#16]

A Family of Spark Joins | 191

Furthermore, the Spark UI (which we will discuss in the next section) shows three
stages for the entire job: the Exchange and Sort operations happen in the final stage,
followed by merging of the results, as depicted in Figures 7-7 and 7-8. The Exchange
is expensive and requires partitions to be shuffled across the network between
executors.

Figure 7-7. Before bucketing: stages of the Spark

192 | Chapter 7: Optimizing and Tuning Spark Applications

Figure 7-8. Before bucketing: Exchange is required

Optimizing the shuffle sort merge join

We can eliminate the Exchange step from this scheme if we create partitioned buckets
for common sorted keys or columns on which we want to perform frequent equi-
joins. That is, we can create an explicit number of buckets to store specific sorted col‐
umns (one key per bucket). Presorting and reorganizing data in this way boosts
performance, as it allows us to skip the expensive Exchange operation and go straight
to WholeStageCodegen.

In the following code snippet from the notebook for this chapter (available in the
book’s GitHub repo) we sort and bucket by the users_id and uid columns on which
we’ll join, and save the buckets as Spark managed tables in Parquet format:

A Family of Spark Joins | 193

https://github.com/databricks/LearningSparkV2

// In Scala
import org.apache.spark.sql.functions._
import org.apache.spark.sql.SaveMode

// Save as managed tables by bucketing them in Parquet format
usersDF.orderBy(asc("uid"))
 .write.format("parquet")
 .bucketBy(8, "uid")
 .mode(SaveMode.OverWrite)
 .saveAsTable("UsersTbl")

ordersDF.orderBy(asc("users_id"))
 .write.format("parquet")
 .bucketBy(8, "users_id")
 .mode(SaveMode.OverWrite)
 .saveAsTable("OrdersTbl")

// Cache the tables
spark.sql("CACHE TABLE UsersTbl")
spark.sql("CACHE TABLE OrdersTbl")

// Read them back in
val usersBucketDF = spark.table("UsersTbl")
val ordersBucketDF = spark.table("OrdersTbl")

// Do the join and show the results
val joinUsersOrdersBucketDF = ordersBucketDF
 .join(usersBucketDF, $"users_id" === $"uid")

joinUsersOrdersBucketDF.show(false)

+--------------+--------+--------+---------+-----+-----+---+---+----------+
|transaction_id|quantity|users_id|amount |state|items|uid|...|user_state|
+--------------+--------+--------+---------+-----+-----+---+---+----------+
144179	144179	22	288358.0	TX	SKU-4	22	...	CO
145352	145352	22	290704.0	NY	SKU-0	22	...	CO
168648	168648	22	337296.0	TX	SKU-2	22	...	CO
173682	173682	22	347364.0	NY	SKU-2	22	...	CO
397577	397577	22	795154.0	CA	SKU-3	22	...	CO
403974	403974	22	807948.0	CO	SKU-2	22	...	CO
405438	405438	22	810876.0	NY	SKU-1	22	...	CO
417886	417886	22	835772.0	CA	SKU-3	22	...	CO
420809	420809	22	841618.0	NY	SKU-4	22	...	CO
659905	659905	22	1319810.0	AZ	SKU-1	22	...	CO
899422	899422	22	1798844.0	TX	SKU-4	22	...	CO
906616	906616	22	1813232.0	CO	SKU-2	22	...	CO
916292	916292	22	1832584.0	TX	SKU-0	22	...	CO
916827	916827	22	1833654.0	TX	SKU-1	22	...	CO
919106	919106	22	1838212.0	TX	SKU-1	22	...	CO
921921	921921	22	1843842.0	AZ	SKU-4	22	...	CO
926777	926777	22	1853554.0	CO	SKU-2	22	...	CO
124630	124630	22	249260.0	CO	SKU-0	22	...	CO

194 | Chapter 7: Optimizing and Tuning Spark Applications

|129823 |129823 |22 |259646.0 |NY |SKU-4|22 |...|CO |
|132756 |132756 |22 |265512.0 |AZ |SKU-2|22 |...|CO |
+--------------+--------+--------+---------+-----+-----+---+---+----------+
only showing top 20 rows

The joined output is sorted by uid and users_id, because we saved the tables sorted
in ascending order. As such, there’s no need to sort during the SortMergeJoin. Look‐
ing at the Spark UI (Figure 7-9), we can see that we skipped the Exchange and went
straight to WholeStageCodegen.

The physical plan also shows no Exchange was performed, compared to the physical
plan before bucketing:

joinUsersOrdersBucketDF.explain()

== Physical Plan ==
*(3) SortMergeJoin [users_id#165], [uid#62], Inner
:- *(1) Sort [users_id#165 ASC NULLS FIRST], false, 0
: +- *(1) Filter isnotnull(users_id#165)
: +- Scan In-memory table `OrdersTbl` [transaction_id#163, quantity#164,
users_id#165, amount#166, state#167, items#168], [isnotnull(users_id#165)]
: +- InMemoryRelation [transaction_id#163, quantity#164, users_id#165,
amount#166, state#167, items#168], StorageLevel(disk, memory, deserialized, 1
replicas)
: +- *(1) ColumnarToRow
: +- FileScan parquet
...

A Family of Spark Joins | 195

Figure 7-9. After bucketing: Exchange is not required

196 | Chapter 7: Optimizing and Tuning Spark Applications

When to use a shuffle sort merge join
Use this type of join under the following conditions for maximum benefit:

• When each key within two large data sets can be sorted and hashed to the same
partition by Spark

• When you want to perform only equi-joins to combine two data sets based on
matching sorted keys

• When you want to prevent Exchange and Sort operations to save large shuffles
across the network

So far we have covered operational aspects related to tuning and optimizing Spark,
and how Spark exchanges data during two common join operations. We also demon‐
strated how you can boost the performance of a shuffle sort merge join operation by
using bucketing to avoid large exchanges of data.

As you’ve seen in the preceding figures, the Spark UI is a useful way to visualize these
operations. It shows collected metrics and the state of the program, revealing a wealth
of information and clues about possible performance bottlenecks. In the final section
of this chapter, we discuss what to look for in the Spark UI.

Inspecting the Spark UI
Spark provides an elaborate web UI that allows us to inspect various components of
our applications. It offers details on memory usage, jobs, stages, and tasks, as well as
event timelines, logs, and various metrics and statistics that can give you insight into
what transpires in your Spark applications, both at the Spark driver level and in indi‐
vidual executors.

A spark-submit job will launch the Spark UI, and you can connect to it on the local
host (in local mode) or through the Spark driver (in other modes) at the default port
4040.

Journey Through the Spark UI Tabs
The Spark UI has six tabs, as shown in Figure 7-10, each providing opportunities for
exploration. Let’s take a look at what each tab reveals to us.

Figure 7-10. Spark UI tabs

Inspecting the Spark UI | 197

This discussion applies to Spark 2.x and Spark 3.0. While much of the UI is the same
in Spark 3.0, it also adds a seventh tab, Structured Streaming. This is previewed in
Chapter 12.

Jobs and Stages
As you learned in Chapter 2, Spark breaks an application down into jobs, stages, and
tasks. The Jobs and Stages tabs allow you to navigate through these and drill down to
a granular level to examine the details of individual tasks. You can view their comple‐
tion status and review metrics related to I/O, memory consumption, duration of exe‐
cution, etc.

Figure 7-11 shows the Jobs tab with the expanded Event Timeline, showing when
executors were added to or removed from the cluster. It also provides a tabular list of
all completed jobs in the cluster. The Duration column indicates the time it took for
each job (identified by the Job Id in the first column) to finish. If this time is high, it’s
a good indication that you might want to investigate the stages in that job to see what
tasks might be causing delays. From this summary page you can also access a details
page for each job, including a DAG visualization and list of completed stages.

Figure 7-11. The Jobs tab offers a view of the event timeline and list of all completed jobs

198 | Chapter 7: Optimizing and Tuning Spark Applications

The Stages tab provides a summary of the current state of all stages of all jobs in the
application. You can also access a details page for each stage, providing a DAG and
metrics on its tasks (Figure 7-12). As well as some other optional statistics, you can
see the average duration of each task, time spent in garbage collection (GC), and
number of shuffle bytes/records read. If shuffle data is being read from remote execu‐
tors, a high Shuffle Read Blocked Time can signal I/O issues. A high GC time signals
too many objects on the heap (your executors may be memory-starved). If a stage’s
max task time is much larger than the median, then you probably have data skew
caused by uneven data distribution in your partitions. Look for these tell-tale signs.

Figure 7-12. The Stages tab provides details on stages and their tasks

Inspecting the Spark UI | 199

You can also see aggregated metrics for each executor and a breakdown of the indi‐
vidual tasks on this page.

Executors
The Executors tab provides information on the executors created for the application.
As you can see in Figure 7-13, you can drill down into the minutiae of details about
resource usage (disk, memory, cores), time spent in GC, amount of data written and
read during shuffle, etc.

Figure 7-13. The Executors tab shows granular statistics and metrics on the executors
used by your Spark application

In addition to the summary statistics, you can view how memory is used by each
individual executor, and for what purpose. This also helps to examine resource usage
when you have used the cache() or persist() method on a DataFrame or managed
table, which we discuss next.

Storage
In the Spark code in “Shuffle Sort Merge Join” we cached two managed tables after
bucketing. The Storage tab, shown in Figure 7-14, provides information on any tables
or DataFrames cached by the application as a result of the cache() or persist()
method.

200 | Chapter 7: Optimizing and Tuning Spark Applications

Figure 7-14. The Storage tab shows details on memory usage

Going a bit further by clicking on the link “In-memory table `UsersTbl`” in
Figure 7-14 displays how the table is cached in memory and on disk across 1 executor
and 8 partitions—this number corresponds to the number of buckets we created for
this table (see Figure 7-15).

Figure 7-15. Spark UI showing cached table distribution across executor memory

Inspecting the Spark UI | 201

SQL
The effects of Spark SQL queries that are executed as part of your Spark application
are traceable and viewable through the SQL tab. You can see when the queries were
executed and by which jobs, and their duration. For example, in our SortMergeJoin
example we executed some queries; all of them are displayed in Figure 7-16, with
links to drill further down.

Figure 7-16. The SQL tab shows details on the completed SQL queries

Clicking on the description of a query displays details of the execution plan with all
the physical operators, as shown in Figure 7-17. Under each physical operator of the
plan—here, Scan In-memory table, HashAggregate, and Exchange—are SQL
metrics.

These metrics are useful when we want to inspect the details of a physical operator
and discover what transpired: how many rows were scanned, how many shuffle bytes
were written, etc.

202 | Chapter 7: Optimizing and Tuning Spark Applications

Figure 7-17. Spark UI showing detailed statistics on a SQL query

Environment
The Environment tab, shown in Figure 7-18, is just as important as the others. Know‐
ing about the environment in which your Spark application is running reveals many
clues that are useful for troubleshooting. In fact, it’s imperative to know what envi‐
ronment variables are set, what jars are included, what Spark properties are set (and
their respective values, especially if you tweaked some of the configs mentioned in
“Optimizing and Tuning Spark for Efficiency” on page 173), what system properties
are set, what runtime environment (such as JVM or Java version) is used, etc. All
these read-only details are a gold mine of information supplementing your investiga‐
tive efforts should you notice any abnormal behavior in your Spark application.

Inspecting the Spark UI | 203

Figure 7-18. The Environment tab shows the runtime properties of your Spark cluster

Debugging Spark applications
In this section, we have navigated through the various tabs in the Spark UI. As you’ve
seen, the UI provides a wealth of information that you can use for debugging and
troubleshooting issues with your Spark applications. In addition to what we’ve cov‐
ered here, it also provides access to both driver and executor stdout/stderr logs,
where you might have logged debugging information.

Debugging through the UI is a different process than stepping through an application
in your favorite IDE—more like sleuthing, following trails of bread crumbs—though

204 | Chapter 7: Optimizing and Tuning Spark Applications

if you prefer that approach, you can also debug a Spark application in an IDE such as
IntelliJ IDEA on a local host.

The Spark 3.0 UI tabs reveal insightful bread crumbs about what happened, along
with access to both driver and executor stdout/stderr logs, where you might have log‐
ged debugging information.

Initially, this plethora of information can be overwhelming to a novice. But with time
you’ll gain an understanding of what to look for in each tab, and you’ll begin to be
able to detect and diagnose anomalies more quickly. Patterns will become clear, and
by frequently visiting these tabs and getting familiar with them after running some
Spark examples, you’ll get accustomed to tuning and inspecting your Spark applica‐
tions via the UI.

Summary
In this chapter we have discussed a number of optimization techniques for tuning
your Spark applications. As you saw, by adjusting some of the default Spark configu‐
rations, you can improve scaling for large workloads, enhance parallelism, and mini‐
mize memory starvation among Spark executors. You also got a glimpse of how you
can use caching and persisting strategies with appropriate levels to expedite access to
your frequently used data sets, and we examined two commonly used joins Spark
employs during complex aggregations and demonstrated how by bucketing Data‐
Frames by sorted keys, you can skip over expensive shuffle operations.

Finally, to get a visual perspective on performance, the Spark UI completed the pic‐
ture. Informative and detailed though the UI is, it’s not equivalent to step-debugging
in an IDE; yet we showed how you can become a Spark sleuth by examining and
gleaning insights from the metrics and statistics, compute and memory usage data,
and SQL query execution traces available on the half-dozen Spark UI tabs.

In the next chapter, we’ll dive into Structured Streaming and show you how the Struc‐
tured APIs that you learned about in earlier chapters allow you to write both stream‐
ing and batch applications in a continuous manner, enabling you to build reliable
data lakes and pipelines.

Summary | 205

https://oreil.ly/HkbIv
https://oreil.ly/3X46q

CHAPTER 8

Structured Streaming

In earlier chapters, you learned how to use structured APIs to process very large but
finite volumes of data. However, often data arrives continuously and needs to be pro‐
cessed in a real-time manner. In this chapter, we will discuss how the same Structured
APIs can be used for processing data streams as well.

Evolution of the Apache Spark Stream Processing Engine
Stream processing is defined as the continuous processing of endless streams of data.
With the advent of big data, stream processing systems transitioned from single-node
processing engines to multiple-node, distributed processing engines. Traditionally,
distributed stream processing has been implemented with a record-at-a-time process‐
ing model, as illustrated in Figure 8-1.

Figure 8-1. Traditional record-at-a-time processing model

207

1 For a more detailed explanation, see the original research paper “Discretized Streams: Fault-Tolerant Stream‐
ing Computation at Scale” by Matei Zaharia et al. (2013).

The processing pipeline is composed of a directed graph of nodes, as shown in
Figure 8-1; each node continuously receives one record at a time, processes it, and
then forwards the generated record(s) to the next node in the graph. This processing
model can achieve very low latencies—that is, an input record can be processed by
the pipeline and the resulting output can be generated within milliseconds. However,
this model is not very efficient at recovering from node failures and straggler nodes
(i.e., nodes that are slower than others); it can either recover from a failure very fast
with a lot of extra failover resources, or use minimal extra resources but recover
slowly.1

The Advent of Micro-Batch Stream Processing
This traditional approach was challenged by Apache Spark when it introduced Spark
Streaming (also called DStreams). It introduced the idea of micro-batch stream pro‐
cessing, where the streaming computation is modeled as a continuous series of small,
map/reduce-style batch processing jobs (hence, “micro-batches”) on small chunks of
the stream data. This is illustrated in Figure 8-2.

Figure 8-2. Structured Streaming uses a micro-batch processing model

As shown here, Spark Streaming divides the data from the input stream into, say, 1-
second micro-batches. Each batch is processed in the Spark cluster in a distributed
manner with small deterministic tasks that generate the output in micro-batches.
Breaking down the streaming computation into these small tasks gives us two advan‐
tages over the traditional, continuous-operator model:

208 | Chapter 8: Structured Streaming

https://oreil.ly/Lz8mM
https://oreil.ly/Lz8mM

• Spark’s agile task scheduling can very quickly and efficiently recover from failures
and straggler executors by rescheduling one or more copies of the tasks on any of
the other executors.

• The deterministic nature of the tasks ensures that the output data is the same no
matter how many times the task is reexecuted. This crucial characteristic enables
Spark Streaming to provide end-to-end exactly-once processing guarantees, that
is, the generated output results will be such that every input record was processed
exactly once.

This efficient fault tolerance does come at the cost of latency—the micro-batch model
cannot achieve millisecond-level latencies; it usually achieves latencies of a few sec‐
onds (as low as half a second in some cases). However, we have observed that for an
overwhelming majority of stream processing use cases, the benefits of micro-batch
processing outweigh the drawback of second-scale latencies. This is because most
streaming pipelines have at least one of the following characteristics:

• The pipeline does not need latencies lower than a few seconds. For example,
when the streaming output is only going to be read by hourly jobs, it is not useful
to generate output with subsecond latencies.

• There are larger delays in other parts of the pipeline. For example, if the writes by
a sensor into Apache Kafka (a system for ingesting data streams) are batched to
achieve higher throughput, then no amount of optimization in the downstream
processing systems can make the end-to-end latency lower than the batching
delays.

Furthermore, the DStream API was built upon Spark’s batch RDD API. Therefore,
DStreams had the same functional semantics and fault-tolerance model as RDDs.
Spark Streaming thus proved that it is possible for a single, unified processing engine
to provide consistent APIs and semantics for batch, interactive, and streaming work‐
loads. This fundamental paradigm shift in stream processing propelled Spark Stream‐
ing to become one of the most widely used open source stream processing engines.

Lessons Learned from Spark Streaming (DStreams)
Despite all the advantages, the DStream API was not without its flaws. Here are a few
key areas for improvement that were identified:

Evolution of the Apache Spark Stream Processing Engine | 209

Lack of a single API for batch and stream processing
Even though DStreams and RDDs have consistent APIs (i.e., same operations
and same semantics), developers still had to explicitly rewrite their code to use
different classes when converting their batch jobs to streaming jobs.

Lack of separation between logical and physical plans
Spark Streaming executes the DStream operations in the same sequence in which
they were specified by the developer. Since developers effectively specify the exact
physical plan, there is no scope for automatic optimizations, and developers have
to hand-optimize their code to get the best performance.

Lack of native support for event-time windows
DStreams define window operations based only on the time when each record is
received by Spark Streaming (known as processing time). However, many use
cases need to calculate windowed aggregates based on the time when the records
were generated (known as event time) instead of when they were received or pro‐
cessed. The lack of native support of event-time windows made it hard for devel‐
opers to build such pipelines with Spark Streaming.

These drawbacks shaped the design philosophy of Structured Streaming, which we
will discuss next.

The Philosophy of Structured Streaming
Based on these lessons from DStreams, Structured Streaming was designed from
scratch with one core philosophy—for developers, writing stream processing pipe‐
lines should be as easy as writing batch pipelines. In a nutshell, the guiding principles
of Structured Streaming are:

A single, unified programming model and interface for batch and stream processing
This unified model offers a simple API interface for both batch and streaming
workloads. You can use familiar SQL or batch-like DataFrame queries (like those
you’ve learned about in the previous chapters) on your stream as you would on a
batch, leaving dealing with the underlying complexities of fault tolerance, opti‐
mizations, and tardy data to the engine. In the coming sections, we will examine
some of the queries you might write.

A broader definition of stream processing
Big data processing applications have grown complex enough that the line
between real-time processing and batch processing has blurred significantly. The
aim with Structured Streaming was to broaden its applicability from traditional
stream processing to a larger class of applications; any application that periodi‐
cally (e.g., every few hours) to continuously (like traditional streaming applica‐
tions) processes data should be expressible using Structured Streaming.

210 | Chapter 8: Structured Streaming

Next, we’ll discuss the programming model used by Structured Streaming.

The Programming Model of Structured Streaming
“Table” is a well-known concept that developers are familiar with when building
batch applications. Structured Streaming extends this concept to streaming applica‐
tions by treating a stream as an unbounded, continuously appended table, as illustra‐
ted in Figure 8-3.

Figure 8-3. The Structured Streaming programming model: data stream as an unboun‐
ded table

Every new record received in the data stream is like a new row being appended to the
unbounded input table. Structured Streaming will not actually retain all the input,
but the output produced by Structured Streaming until time T will be equivalent to
having all of the input until T in a static, bounded table and running a batch job on
the table.

As shown in Figure 8-4, the developer then defines a query on this conceptual input
table, as if it were a static table, to compute the result table that will be written to an
output sink. Structured Streaming will automatically convert this batch-like query to
a streaming execution plan. This is called incrementalization: Structured Streaming
figures out what state needs to be maintained to update the result each time a record
arrives. Finally, developers specify triggering policies to control when to update the
results. Each time a trigger fires, Structured Streaming checks for new data (i.e., a new
row in the input table) and incrementally updates the result.

The Programming Model of Structured Streaming | 211

Figure 8-4. The Structured Streaming processing model

The last part of the model is the output mode. Each time the result table is updated,
the developer will want to write the updates to an external system, such as a filesys‐
tem (e.g., HDFS, Amazon S3) or a database (e.g., MySQL, Cassandra). We usually
want to write output incrementally. For this purpose, Structured Streaming provides
three output modes:

Append mode
Only the new rows appended to the result table since the last trigger will be writ‐
ten to the external storage. This is applicable only in queries where existing rows
in the result table cannot change (e.g., a map on an input stream).

Update mode
Only the rows that were updated in the result table since the last trigger will be
changed in the external storage. This mode works for output sinks that can be
updated in place, such as a MySQL table.

Complete mode
The entire updated result table will be written to external storage.

212 | Chapter 8: Structured Streaming

Unless complete mode is specified, the result table will not be fully
materialized by Structured Streaming. Just enough information
(known as “state”) will be maintained to ensure that the changes in
the result table can be computed and the updates can be output.

Thinking of the data streams as tables not only makes it easier to conceptualize the
logical computations on the data, but also makes it easier to express them in code.
Since Spark’s DataFrame is a programmatic representation of a table, you can use the
DataFrame API to express your computations on streaming data. All you need to do
is define an input DataFrame (i.e., the input table) from a streaming data source, and
then you apply operations on the DataFrame in the same way as you would on a
DataFrame defined on a batch source.

In the next section, you will see how easy it is to write Structured Streaming queries
using DataFrames.

The Fundamentals of a Structured Streaming Query
In this section, we are going to cover some high-level concepts that you’ll need to
understand to develop Structured Streaming queries. We will first walk through the
key steps to define and start a streaming query, then we will discuss how to monitor
the active query and manage its life cycle.

Five Steps to Define a Streaming Query
As discussed in the previous section, Structured Streaming uses the same DataFrame
API as batch queries to express the data processing logic. However, there are a few
key differences you need to know about for defining a Structured Streaming query. In
this section, we will explore the steps involved in defining a streaming query by
building a simple query that reads streams of text data over a socket and counts the
words.

Step 1: Define input sources
As with batch queries, the first step is to define a DataFrame from a streaming source.
However, when reading batch data sources, we need spark.read to create a DataFra
meReader, whereas with streaming sources we need spark.readStream to create a
DataStreamReader. DataStreamReader has most of the same methods as DataFrameR
eader, so you can use it in a similar way. Here is an example of creating a DataFrame
from a text data stream to be received over a socket connection:

The Fundamentals of a Structured Streaming Query | 213

In Python
spark = SparkSession...
lines = (spark
 .readStream.format("socket")
 .option("host", "localhost")
 .option("port", 9999)
 .load())

// In Scala
val spark = SparkSession...
val lines = spark
 .readStream.format("socket")
 .option("host", "localhost")
 .option("port", 9999)
 .load()

This code generates the lines DataFrame as an unbounded table of newline-
separated text data read from localhost:9999. Note that, similar to batch sources with
spark.read, this does not immediately start reading the streaming data; it only sets
up the configurations necessary for reading the data once the streaming query is
explicitly started.

Besides sockets, Apache Spark natively supports reading data streams from Apache
Kafka and all the various file-based formats that DataFrameReader supports (Parquet,
ORC, JSON, etc.). The details of these sources and their supported options are dis‐
cussed later in this chapter. Furthermore, a streaming query can define multiple input
sources, both streaming and batch, which can be combined using DataFrame opera‐
tions like unions and joins (also discussed later in this chapter).

Step 2: Transform data
Now we can apply the usual DataFrame operations, such as splitting the lines into
individual words and then counting them, as shown in the following code:

In Python
from pyspark.sql.functions import *
words = lines.select(split(col("value"), "\\s").alias("word"))
counts = words.groupBy("word").count()

// In Scala
import org.apache.spark.sql.functions._
val words = lines.select(split(col("value"), "\\s").as("word"))
val counts = words.groupBy("word").count()

counts is a streaming DataFrame (that is, a DataFrame on unbounded, streaming
data) that represents the running word counts that will be computed once the stream‐
ing query is started and the streaming input data is being continuously processed.

Note that these operations to transform the lines streaming DataFrame would work
in the exact same way if lines were a batch DataFrame. In general, most DataFrame

214 | Chapter 8: Structured Streaming

operations that can be applied on a batch DataFrame can also be applied on a stream‐
ing DataFrame. To understand which operations are supported in Structured Stream‐
ing, you have to recognize the two broad classes of data transformations:

Stateless transformations
Operations like select(), filter(), map(), etc. do not require any information
from previous rows to process the next row; each row can be processed by itself.
The lack of previous “state” in these operations make them stateless. Stateless
operations can be applied to both batch and streaming DataFrames.

Stateful transformations
In contrast, an aggregation operation like count() requires maintaining state to
combine data across multiple rows. More specifically, any DataFrame operations
involving grouping, joining, or aggregating are stateful transformations. While
many of these operations are supported in Structured Streaming, a few combina‐
tions of them are not supported because it is either computationally hard or
infeasible to compute them in an incremental manner.

The stateful operations supported by Structured Streaming and how to manage their
state at runtime are discussed later in the chapter.

Step 3: Define output sink and output mode
After transforming the data, we can define how to write the processed output data
with DataFrame.writeStream (instead of DataFrame.write, used for batch data).
This creates a DataStreamWriter which, similar to DataFrameWriter, has additional
methods to specify the following:

• Output writing details (where and how to write the output)
• Processing details (how to process data and how to recover from failures)

Let’s start with the output writing details (we will focus on the processing details in
the next step). For example, the following snippet shows how to write the final
counts to the console:

In Python
writer = counts.writeStream.format("console").outputMode("complete")

// In Scala
val writer = counts.writeStream.format("console").outputMode("complete")

Here we have specified "console" as the output streaming sink and "complete" as
the output mode. The output mode of a streaming query specifies what part of the
updated output to write out after processing new input data. In this example, as a
chunk of new input data is processed and the word counts are updated, we can
choose to print to the console either the counts of all the words seen until now (that

The Fundamentals of a Structured Streaming Query | 215

is, complete mode), or only those words that were updated in the last chunk of input
data. This is decided by the specified output mode, which can be one of the following
(as we already saw in “The Programming Model of Structured Streaming” on page
211:

Append mode
This is the default mode, where only the new rows added to the result table/Data‐
Frame (for example, the counts table) since the last trigger will be output to the
sink. Semantically, this mode guarantees that any row that is output is never
going to be changed or updated by the query in the future. Hence, append mode
is supported by only those queries (e.g., stateless queries) that will never modify
previously output data. In contrast, our word count query can update previously
generated counts; therefore, it does not support append mode.

Complete mode
In this mode, all the rows of the result table/DataFrame will be output at the end
of every trigger. This is supported by queries where the result table is likely to be
much smaller than the input data and therefore can feasibly be retained in mem‐
ory. For example, our word count query supports complete mode because the
counts data is likely to be far smaller than the input data.

Update mode
In this mode, only the rows of the result table/DataFrame that were updated
since the last trigger will be output at the end of every trigger. This is in contrast
to append mode, as the output rows may be modified by the query and output
again in the future. Most queries support update mode.

Complete details on the output modes supported by different quer‐
ies can be found in the latest Structured Streaming Programming
Guide.

Besides writing the output to the console, Structured Streaming natively supports
streaming writes to files and Apache Kafka. In addition, you can write to arbitrary
locations using the foreachBatch() and foreach() API methods. In fact, you can
use foreachBatch() to write streaming outputs using existing batch data sources
(but you will lose exactly-once guarantees). The details of these sinks and their sup‐
ported options are discussed later in this chapter.

Step 4: Specify processing details
The final step before starting the query is to specify details of how to process the data.
Continuing with our word count example, we are going to specify the processing
details as follows:

216 | Chapter 8: Structured Streaming

https://oreil.ly/hyuKL
https://oreil.ly/hyuKL

In Python
checkpointDir = "..."
writer2 = (writer
 .trigger(processingTime="1 second")
 .option("checkpointLocation", checkpointDir))

// In Scala
import org.apache.spark.sql.streaming._
val checkpointDir = "..."
val writer2 = writer
 .trigger(Trigger.ProcessingTime("1 second"))
 .option("checkpointLocation", checkpointDir)

Here we have specified two types of details using the DataStreamWriter that we cre‐
ated with DataFrame.writeStream:

Triggering details
This indicates when to trigger the discovery and processing of newly available
streaming data. There are four options:

Default
When the trigger is not explicitly specified, then by default, the streaming
query executes data in micro-batches where the next micro-batch is trig‐
gered as soon as the previous micro-batch has completed.

Processing time with trigger interval
You can explicitly specify the ProcessingTime trigger with an interval, and
the query will trigger micro-batches at that fixed interval.

Once
In this mode, the streaming query will execute exactly one micro-batch—it
processes all the new data available in a single batch and then stops itself.
This is useful when you want to control the triggering and processing from
an external scheduler that will restart the query using any custom schedule
(e.g., to control cost by only executing a query once per day).

Continuous
This is an experimental mode (as of Spark 3.0) where the streaming query
will process data continuously instead of in micro-batches. While only a
small subset of DataFrame operations allow this mode to be used, it can pro‐
vide much lower latency (as low as milliseconds) than the micro-batch trig‐
ger modes. Refer to the latest Structured Streaming Programming Guide for
the most up-to-date information.

The Fundamentals of a Structured Streaming Query | 217

https://oreil.ly/Y7EZy
https://oreil.ly/7cERT

Checkpoint location
This is a directory in any HDFS-compatible filesystem where a streaming query
saves its progress information—that is, what data has been successfully pro‐
cessed. Upon failure, this metadata is used to restart the failed query exactly
where it left off. Therefore, setting this option is necessary for failure recovery
with exactly-once guarantees.

Step 5: Start the query
Once everything has been specified, the final step is to start the query, which you can
do with the following:

In Python
streamingQuery = writer2.start()

// In Scala
val streamingQuery = writer2.start()

The returned object of type streamingQuery represents an active query and can be
used to manage the query, which we will cover later in this chapter.

Note that start() is a nonblocking method, so it will return as soon as the query has
started in the background. If you want the main thread to block until the streaming
query has terminated, you can use streamingQuery.awaitTermination(). If the
query fails in the background with an error, awaitTermination() will also fail with
that same exception.

You can wait up to a timeout duration using awaitTermination(timeoutMillis),
and you can explicitly stop the query with streamingQuery.stop().

Putting it all together
To summarize, here is the complete code for reading streams of text data over a
socket, counting the words, and printing the counts to the console:

In Python
from pyspark.sql.functions import *
spark = SparkSession...
lines = (spark
 .readStream.format("socket")
 .option("host", "localhost")
 .option("port", 9999)
 .load())

words = lines.select(split(col("value"), "\\s").alias("word"))
counts = words.groupBy("word").count()
checkpointDir = "..."
streamingQuery = (counts
 .writeStream
 .format("console")

218 | Chapter 8: Structured Streaming

2 This execution loop runs for micro-batch-based trigger modes (i.e., ProcessingTime and Once), but not for
the Continuous trigger mode.

 .outputMode("complete")
 .trigger(processingTime="1 second")
 .option("checkpointLocation", checkpointDir)
 .start())
streamingQuery.awaitTermination()

// In Scala
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming._
val spark = SparkSession...
val lines = spark
 .readStream.format("socket")
 .option("host", "localhost")
 .option("port", 9999)
 .load()

val words = lines.select(split(col("value"), "\\s").as("word"))
val counts = words.groupBy("word").count()

val checkpointDir = "..."
val streamingQuery = counts.writeStream
 .format("console")
 .outputMode("complete")
 .trigger(Trigger.ProcessingTime("1 second"))
 .option("checkpointLocation", checkpointDir)
 .start()
streamingQuery.awaitTermination()

After the query has started, a background thread continuously reads new data from
the streaming source, processes it, and writes it to the streaming sinks. Next, let’s take
a quick peek under the hood at how this is executed.

Under the Hood of an Active Streaming Query
Once the query starts, the following sequence of steps transpires in the engine, as
depicted in Figure 8-5. The DataFrame operations are converted into a logical plan,
which is an abstract representation of the computation that Spark SQL uses to plan a
query:

1. Spark SQL analyzes and optimizes this logical plan to ensure that it can be exe‐
cuted incrementally and efficiently on streaming data.

2. Spark SQL starts a background thread that continuously executes the following
loop:2

The Fundamentals of a Structured Streaming Query | 219

a. Based on the configured trigger interval, the thread checks the streaming
sources for the availability of new data.

b. If available, the new data is executed by running a micro-batch. From the
optimized logical plan, an optimized Spark execution plan is generated that
reads the new data from the source, incrementally computes the updated
result, and writes the output to the sink according to the configured output
mode.

c. For every micro-batch, the exact range of data processed (e.g., the set of files
or the range of Apache Kafka offsets) and any associated state are saved in the
configured checkpoint location so that the query can deterministically reproc‐
ess the exact range if needed.

3. This loop continues until the query is terminated, which can occur for one of the
following reasons:
a. A failure has occurred in the query (either a processing error or a failure in

the cluster).
b. The query is explicitly stopped using streamingQuery.stop().
c. If the trigger is set to Once, then the query will stop on its own after executing

a single micro-batch containing all the available data.

Figure 8-5. Incremental execution of streaming queries

220 | Chapter 8: Structured Streaming

A key point you should remember about Structured Streaming is
that underneath it is using Spark SQL to execute the data. As such,
the full power of Spark SQL’s hyperoptimized execution engine is
utilized to maximize the stream processing throughput, providing
key performance advantages.

Next, we will discuss how to restart a streaming query after termination and the life
cycle of a streaming query.

Recovering from Failures with Exactly-Once Guarantees
To restart a terminated query in a completely new process, you have to create a new
SparkSession, redefine all the DataFrames, and start the streaming query on the final
result using the same checkpoint location as the one used when the query was started
the first time. For our word count example, you can simply reexecute the entire code
snippet shown earlier, from the definition of spark in the first line to the final
start() in the last line.

The checkpoint location must be the same across restarts because this directory con‐
tains the unique identity of a streaming query and determines the life cycle of the
query. If the checkpoint directory is deleted or the same query is started with a differ‐
ent checkpoint directory, it is like starting a new query from scratch. Specifically,
checkpoints have record-level information (e.g., Apache Kafka offsets) to track the
data range the last incomplete micro-batch was processing. The restarted query will
use this information to start processing records precisely after the last successfully
completed micro-batch. If the previous query had planned a micro-batch but had ter‐
minated before completion, then the restarted query will reprocess the same range of
data before processing new data. Coupled with Spark’s deterministic task execution,
the regenerated output will be the same as it was expected to be before the restart.

Structured Streaming can ensure end-to-end exactly-once guarantees (that is, the out‐
put is as if each input record was processed exactly once) when the following condi‐
tions have been satisfied:

Replayable streaming sources
The data range of the last incomplete micro-batch can be reread from the source.

Deterministic computations
All data transformations deterministically produce the same result when given
the same input data.

Idempotent streaming sink
The sink can identify reexecuted micro-batches and ignore duplicate writes that
may be caused by restarts.

The Fundamentals of a Structured Streaming Query | 221

Note that our word count example does not provide exactly-once guarantees because
the socket source is not replayable and the console sink is not idempotent.

As a final note regarding restarting queries, it is possible to make minor modifica‐
tions to a query between restarts. Here are a few ways you can modify the query:

DataFrame transformations
You can make minor modifications to the transformations between restarts. For
example, in our streaming word count example, if you want to ignore lines that
have corrupted byte sequences that can crash the query, you can add a filter in
the transformation:

In Python
isCorruptedUdf = udf to detect corruption in string

filteredLines = lines.filter("isCorruptedUdf(value) = false")
words = filteredLines.select(split(col("value"), "\\s").alias("word"))

// In Scala
// val isCorruptedUdf = udf to detect corruption in string

val filteredLines = lines.filter("isCorruptedUdf(value) = false")
val words = filteredLines.select(split(col("value"), "\\s").as("word"))

Upon restarting with this modified words DataFrame, the restarted query will
apply the filter on all data processed since the restart (including the last incom‐
plete micro-batch), preventing the query from failing again.

Source and sink options
Whether a readStream or writeStream option can be changed between restarts
depends on the semantics of the specific source or sink. For example, you should
not change the host and port options for the socket source if data is going to be
sent to that host and port. But you can add an option to the console sink to print
up to one hundred changed counts after every trigger:

writeStream.format("console").option("numRows", "100")...

Processing details
As discussed earlier, the checkpoint location must not be changed between
restarts. However, other details like trigger interval can be changed without
breaking fault-tolerance guarantees.

For more information on the narrow set of changes that are allowed between restarts,
see the latest Structured Streaming Programming Guide.

222 | Chapter 8: Structured Streaming

https://oreil.ly/am885

Monitoring an Active Query
An important part of running a streaming pipeline in production is tracking its
health. Structured Streaming provides several ways to track the status and processing
metrics of an active query.

Querying current status using StreamingQuery

You can query the current health of an active query using the StreamingQuery
instance. Here are two methods:

Get current metrics using StreamingQuery. When a query processes some data in a
micro-batch, we consider it to have made some progress. lastProgress() returns
information on the last completed micro-batch. For example, printing the returned
object (StreamingQueryProgress in Scala/Java or a dictionary in Python) will pro‐
duce something like this:

// In Scala/Python
{
 "id" : "ce011fdc-8762-4dcb-84eb-a77333e28109",
 "runId" : "88e2ff94-ede0-45a8-b687-6316fbef529a",
 "name" : "MyQuery",
 "timestamp" : "2016-12-14T18:45:24.873Z",
 "numInputRows" : 10,
 "inputRowsPerSecond" : 120.0,
 "processedRowsPerSecond" : 200.0,
 "durationMs" : {
 "triggerExecution" : 3,
 "getOffset" : 2
 },
 "stateOperators" : [],
 "sources" : [{
 "description" : "KafkaSource[Subscribe[topic-0]]",
 "startOffset" : {
 "topic-0" : {
 "2" : 0,
 "1" : 1,
 "0" : 1
 }
 },
 "endOffset" : {
 "topic-0" : {
 "2" : 0,
 "1" : 134,
 "0" : 534
 }
 },
 "numInputRows" : 10,
 "inputRowsPerSecond" : 120.0,
 "processedRowsPerSecond" : 200.0

The Fundamentals of a Structured Streaming Query | 223

 }],
 "sink" : {
 "description" : "MemorySink"
 }
}

Some of the noteworthy columns are:

id

Unique identifier tied to a checkpoint location. This stays the same throughout
the lifetime of a query (i.e., across restarts).

runId

Unique identifier for the current (re)started instance of the query. This changes
with every restart.

numInputRows

Number of input rows that were processed in the last micro-batch.

inputRowsPerSecond

Current rate at which input rows are being generated at the source (average over
the last micro-batch duration).

processedRowsPerSecond

Current rate at which rows are being processed and written out by the sink (aver‐
age over the last micro-batch duration). If this rate is consistently lower than the
input rate, then the query is unable to process data as fast as it is being generated
by the source. This is a key indicator of the health of the query.

sources and sink
Provides source/sink-specific details of the data processed in the last batch.

Get current status using StreamingQuery.status(). This provides information on what the
background query thread is doing at this moment. For example, printing the returned
object will produce something like this:

// In Scala/Python
{
 "message" : "Waiting for data to arrive",
 "isDataAvailable" : false,
 "isTriggerActive" : false
}

Publishing metrics using Dropwizard Metrics
Spark supports reporting metrics via a popular library called Dropwizard Metrics.
This library allows metrics to be published to many popular monitoring frameworks
(Ganglia, Graphite, etc.). These metrics are by default not enabled for Structured
Streaming queries due to their high volume of reported data. To enable them, apart

224 | Chapter 8: Structured Streaming

https://metrics.dropwizard.io

from configuring Dropwizard Metrics for Spark, you have to explicitly set the
SparkSession configuration spark.sql.streaming.metricsEnabled to true before
starting your query.

Note that only a subset of the information available through
StreamingQuery.lastProgress() is published through Dropwizard Metrics. If you
want to continuously publish more progress information to arbitrary locations, you
have to write custom listeners, as discussed next.

Publishing metrics using custom StreamingQueryListeners

StreamingQueryListener is an event listener interface with which you can inject
arbitrary logic to continuously publish metrics. This developer API is available only
in Scala/Java. There are two steps to using custom listeners:

1. Define your custom listener. The StreamingQueryListener interface provides
three methods that can be defined by your implementation to get three types of
events related to a streaming query: start, progress (i.e., a trigger was executed),
and termination. Here is an example:

// In Scala
import org.apache.spark.sql.streaming._
val myListener = new StreamingQueryListener() {
 override def onQueryStarted(event: QueryStartedEvent): Unit = {
 println("Query started: " + event.id)
 }
 override def onQueryTerminated(event: QueryTerminatedEvent): Unit = {
 println("Query terminated: " + event.id)
 }
 override def onQueryProgress(event: QueryProgressEvent): Unit = {
 println("Query made progress: " + event.progress)
 }
}

2. Add your listener to the SparkSession before starting the query:
// In Scala
spark.streams.addListener(myListener)

After adding the listener, all events of streaming queries running on this Spark
Session will start calling the listener’s methods.

The Fundamentals of a Structured Streaming Query | 225

https://oreil.ly/4xenP

Streaming Data Sources and Sinks
Now that we have covered the basic steps you need to express an end-to-end Struc‐
tured Streaming query, let’s examine how to use the built-in streaming data sources
and sinks. As a reminder, you can create DataFrames from streaming sources using
SparkSession.readStream() and write the output from a result DataFrame using
DataFrame.writeStream(). In each case, you can specify the source type using the
method format(). We will see a few concrete examples later.

Files
Structured Streaming supports reading and writing data streams to and from files in
the same formats as the ones supported in batch processing: plain text, CSV, JSON,
Parquet, ORC, etc. Here we will discuss how to operate Structured Streaming on files.

Reading from files
Structured Streaming can treat files written into a directory as a data stream. Here is
an example:

In Python
from pyspark.sql.types import *
inputDirectoryOfJsonFiles = ...

fileSchema = (StructType()
 .add(StructField("key", IntegerType()))
 .add(StructField("value", IntegerType())))

inputDF = (spark
 .readStream
 .format("json")
 .schema(fileSchema)
 .load(inputDirectoryOfJsonFiles))

// In Scala
import org.apache.spark.sql.types._
val inputDirectoryOfJsonFiles = ...

val fileSchema = new StructType()
 .add("key", IntegerType)
 .add("value", IntegerType)

val inputDF = spark.readStream
 .format("json")
 .schema(fileSchema)
 .load(inputDirectoryOfJsonFiles)

The returned streaming DataFrame will have the specified schema. Here are a few key
points to remember when using files:

226 | Chapter 8: Structured Streaming

• All the files must be of the same format and are expected to have the same
schema. For example, if the format is "json", all the files must be in the JSON
format with one JSON record per line. The schema of each JSON record must
match the one specified with readStream(). Violation of these assumptions can
lead to incorrect parsing (e.g., unexpected null values) or query failures.

• Each file must appear in the directory listing atomically—that is, the whole file
must be available at once for reading, and once it is available, the file cannot be
updated or modified. This is because Structured Streaming will process the file
when the engine finds it (using directory listing) and internally mark it as pro‐
cessed. Any changes to that file will not be processed.

• When there are multiple new files to process but it can only pick some of them in
the next micro-batch (e.g., because of rate limits), it will select the files with the
earliest timestamps. Within the micro-batch, however, there is no predefined
order of reading of the selected files; all of them will be read in parallel.

This streaming file source supports a number of common options,
including the file format–specific options supported by
spark.read() (see “Data Sources for DataFrames and SQL Tables”
on page 94 in Chapter 4) and several streaming-specific options
(e.g., maxFilesPerTrigger to limit the file processing rate). See the
programming guide for full details.

Writing to files
Structured Streaming supports writing streaming query output to files in the same
formats as reads. However, it only supports append mode, because while it is easy to
write new files in the output directory (i.e., append data to a directory), it is hard to
modify existing data files (as would be expected with update and complete modes). It
also supports partitioning. Here is an example:

In Python
outputDir = ...
checkpointDir = ...
resultDF = ...

streamingQuery = (resultDF.writeStream
 .format("parquet")
 .option("path", outputDir)
 .option("checkpointLocation", checkpointDir)
 .start())

Streaming Data Sources and Sinks | 227

https://oreil.ly/VxU9U

// In Scala
val outputDir = ...
val checkpointDir = ...
val resultDF = ...

val streamingQuery = resultDF
 .writeStream
 .format("parquet")
 .option("path", outputDir)
 .option("checkpointLocation", checkpointDir)
 .start()

Instead of using the "path" option, you can specify the output directory directly as
start(outputDir).

A few key points to remember:

• Structured Streaming achieves end-to-end exactly-once guarantees when writing
to files by maintaining a log of the data files that have been written to the direc‐
tory. This log is maintained in the subdirectory _spark_metadata. Any Spark
query on the directory (not its subdirectories) will automatically use the log to
read the correct set of data files so that the exactly-once guarantee is maintained
(i.e., no duplicate data or partial files are read). Note that other processing
engines may not be aware of this log and hence may not provide the same
guarantee.

• If you change the schema of the result DataFrame between restarts, then the out‐
put directory will have data in multiple schemas. These schemas have to be rec‐
onciled when querying the directory.

Apache Kafka
Apache Kafka is a popular publish/subscribe system that is widely used for storage of
data streams. Structured Streaming has built-in support for reading from and writing
to Apache Kafka.

Reading from Kafka
To perform distributed reads from Kafka, you have to use options to specify how to
connect to the source. Say you want to subscribe to data from the topic "events".
Here is how you can create a streaming DataFrame:

In Python
inputDF = (spark
 .readStream
 .format("kafka")
 .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
 .option("subscribe", "events")
 .load())

228 | Chapter 8: Structured Streaming

https://kafka.apache.org/

// In Scala
val inputDF = spark
 .readStream
 .format("kafka")
 .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
 .option("subscribe", "events")
 .load()

The returned DataFrame will have the schema described in Table 8-1.

Table 8-1. Schema of the DataFrame generated by the Kafka source

Column name Column type Description
key binary Key data of the record as bytes.

value binary Value data of the record as bytes.

topic string Kafka topic the record was in. This is useful when subscribed to multiple topics.

partition int Partition of the Kafka topic the record was in.

offset long Offset value of the record.

timestamp long Timestamp associated with the record.

timestampType int Enumeration for the type of the timestamp associated with the record.

You can also choose to subscribe to multiple topics, a pattern of topics, or even a spe‐
cific partition of a topic. Furthermore, you can choose whether to read only new data
in the subscribed-to topics or process all the available data in those topics. You can
even read Kafka data from batch queries—that is, treat Kafka topics like tables. See
the Kafka Integration Guide for more details.

Writing to Kafka
For writing to Kafka, Structured Streaming expects the result DataFrame to have a
few columns of specific names and types, as outlined in Table 8-2.

Table 8-2. Schema of DataFrame that can be written to the Kafka sink

Column name Column type Description
key (optional) string or

binary

If present, the bytes will be written as the Kafka record key; otherwise, the key
will be empty.

value (required) string or
binary

The bytes will be written as the Kafka record value.

topic (required only if
"topic" is not
specified as option)

string If "topic" is not specified as an option, this determines the topic to write the
key/value to. This is useful for fanning out the writes to multiple topics. If the
"topic" option has been specified, this value is ignored.

Streaming Data Sources and Sinks | 229

https://oreil.ly/FVP0l

You can write to Kafka in all three output modes, though complete mode is not rec‐
ommended as it will repeatedly output the same records. Here is a concrete example
of writing the output of our earlier word count query into Kafka in update mode:

In Python
counts = ... # DataFrame[word: string, count: long]
streamingQuery = (counts
 .selectExpr(
 "cast(word as string) as key",
 "cast(count as string) as value")
 .writeStream
 .format("kafka")
 .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
 .option("topic", "wordCounts")
 .outputMode("update")
 .option("checkpointLocation", checkpointDir)
 .start())

// In Scala
val counts = ... // DataFrame[word: string, count: long]
val streamingQuery = counts
 .selectExpr(
 "cast(word as string) as key",
 "cast(count as string) as value")
 .writeStream
 .format("kafka")
 .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
 .option("topic", "wordCounts")
 .outputMode("update")
 .option("checkpointLocation", checkpointDir)
 .start()

See the Kafka Integration Guide for more details.

Custom Streaming Sources and Sinks
In this section, we will discuss how to read and write to storage systems that do not
have built-in support in Structured Streaming. In particular, you’ll see how to use the
foreachBatch() and foreach() methods to implement custom logic to write to your
storage.

Writing to any storage system
There are two operations that allow you to write the output of a streaming query to
arbitrary storage systems: foreachBatch() and foreach(). They have slightly differ‐
ent use cases: while foreach() allows custom write logic on every row, foreach
Batch() allows arbitrary operations and custom logic on the output of each micro-
batch. Let’s explore their usage in more detail.

230 | Chapter 8: Structured Streaming

https://oreil.ly/tFo-N

Using foreachBatch(). foreachBatch() allows you to specify a function that is exe‐
cuted on the output of every micro-batch of a streaming query. It takes two parame‐
ters: a DataFrame or Dataset that has the output of a micro-batch, and the unique
identifier of the micro-batch. As an example, say we want to write the output of our
earlier word count query to Apache Cassandra. As of Spark Cassandra Connector
2.4.2, there is no support for writing streaming DataFames. But you can use the con‐
nector’s batch DataFrame support to write the output of each batch (i.e., updated
word counts) to Cassandra, as shown here:

In Python
hostAddr = "<ip address>"
keyspaceName = "<keyspace>"
tableName = "<tableName>"

spark.conf.set("spark.cassandra.connection.host", hostAddr)

def writeCountsToCassandra(updatedCountsDF, batchId):
 # Use Cassandra batch data source to write the updated counts
 (updatedCountsDF
 .write
 .format("org.apache.spark.sql.cassandra")
 .mode("append")
 .options(table=tableName, keyspace=keyspaceName)
 .save())

streamingQuery = (counts
 .writeStream
 .foreachBatch(writeCountsToCassandra)
 .outputMode("update")
 .option("checkpointLocation", checkpointDir)
 .start())

// In Scala
import org.apache.spark.sql.DataFrame

val hostAddr = "<ip address>"
val keyspaceName = "<keyspace>"
val tableName = "<tableName>"

spark.conf.set("spark.cassandra.connection.host", hostAddr)

def writeCountsToCassandra(updatedCountsDF: DataFrame, batchId: Long) {
 // Use Cassandra batch data source to write the updated counts
 updatedCountsDF
 .write
 .format("org.apache.spark.sql.cassandra")
 .options(Map("table" -> tableName, "keyspace" -> keyspaceName))
 .mode("append")
 .save()
 }

Streaming Data Sources and Sinks | 231

http://cassandra.apache.org/
https://oreil.ly/I7Mof
https://oreil.ly/I7Mof

3 For the full list of unsupported operations, see the Structured Streaming Programming Guide.

val streamingQuery = counts
 .writeStream
 .foreachBatch(writeCountsToCassandra _)
 .outputMode("update")
 .option("checkpointLocation", checkpointDir)
 .start()

With foreachBatch(), you can do the following:

Reuse existing batch data sources
As shown in the previous example, with foreachBatch() you can use existing
batch data sources (i.e., sources that support writing batch DataFrames) to write
the output of streaming queries.

Write to multiple locations
If you want to write the output of a streaming query to multiple locations (e.g.,
an OLAP data warehouse and an OLTP database), then you can simply write the
output DataFrame/Dataset multiple times. However, each attempt to write can
cause the output data to be recomputed (including possible rereading of the
input data). To avoid recomputations, you should cache the batchOutputData
Frame, write it to multiple locations, and then uncache it:

In Python
def writeCountsToMultipleLocations(updatedCountsDF, batchId):
 updatedCountsDF.persist()
 updatedCountsDF.write.format(...).save() # Location 1
 updatedCountsDF.write.format(...).save() # Location 2
 updatedCountsDF.unpersist()

// In Scala
def writeCountsToMultipleLocations(
 updatedCountsDF: DataFrame,
 batchId: Long) {
 updatedCountsDF.persist()
 updatedCountsDF.write.format(...).save() // Location 1
 updatedCountsDF.write.format(...).save() // Location 2
 updatedCountsDF.unpersist()
 }

Apply additional DataFrame operations
Many DataFrame API operations are not supported3 on streaming DataFrames
because Structured Streaming does not support generating incremental plans in
those cases. Using foreachBatch(), you can apply some of these operations on
each micro-batch output. However, you will have to reason about the end-to-end
semantics of doing the operation yourself.

232 | Chapter 8: Structured Streaming

https://oreil.ly/wa60L

foreachBatch() only provides at-least-once write guarantees. You
can get exactly-once guarantees by using the batchId to dedupli‐
cate multiple writes from reexecuted micro-batches.

Using foreach(). If foreachBatch() is not an option (for example, if a corresponding
batch data writer does not exist), then you can express your custom writer logic using
foreach(). Specifically, you can express the data-writing logic by dividing it into
three methods: open(), process(), and close(). Structured Streaming will use these
methods to write each partition of the output records. Here is an abstract example:

In Python
Variation 1: Using function
def process_row(row):
 # Write row to storage
 pass

query = streamingDF.writeStream.foreach(process_row).start()

Variation 2: Using the ForeachWriter class
class ForeachWriter:
 def open(self, partitionId, epochId):
 # Open connection to data store
 # Return True if write should continue
 # This method is optional in Python
 # If not specified, the write will continue automatically
 return True

 def process(self, row):
 # Write string to data store using opened connection
 # This method is NOT optional in Python
 pass

 def close(self, error):
 # Close the connection. This method is optional in Python
 pass

resultDF.writeStream.foreach(ForeachWriter()).start()

// In Scala
import org.apache.spark.sql.ForeachWriter
val foreachWriter = new ForeachWriter[String] { // typed with Strings

 def open(partitionId: Long, epochId: Long): Boolean = {
 // Open connection to data store
 // Return true if write should continue
 }

 def process(record: String): Unit = {
 // Write string to data store using opened connection

Streaming Data Sources and Sinks | 233

 }

 def close(errorOrNull: Throwable): Unit = {
 // Close the connection
 }
 }

resultDSofStrings.writeStream.foreach(foreachWriter).start()

The detailed semantics of these methods as executed are discussed in the Structured
Streaming Programming Guide.

Reading from any storage system
Unfortunately, as of Spark 3.0, the APIs to build custom streaming sources and sinks
are still experimental. The DataSourceV2 initiative in Spark 3.0 introduces the
streaming APIs but they are yet to be declared as stable. Hence, there is no official
way to read from arbitrary storage systems.

Data Transformations
In this section, we are going to dig deeper into the data transformations supported in
Structured Streaming. As briefly discussed earlier, only the DataFrame operations
that can be executed incrementally are supported in Structured Streaming. These
operations are broadly classified into stateless and stateful operations. We will define
each type of operation and explain how to identify which operations are stateful.

Incremental Execution and Streaming State
As we discussed in “Under the Hood of an Active Streaming Query” on page 219, the
Catalyst optimizer in Spark SQL converts all the DataFrame operations to an opti‐
mized logical plan. The Spark SQL planner, which decides how to execute a logical
plan, recognizes that this is a streaming logical plan that needs to operate on continu‐
ous data streams. Accordingly, instead of converting the logical plan to a one-time
physical execution plan, the planner generates a continuous sequence of execution
plans. Each execution plan updates the final result DataFrame incrementally—that is,
the plan processes only a chunk of new data from the input streams and possibly
some intermediate, partial result computed by the previous execution plan.

Each execution is considered as a micro-batch, and the partial intermediate result
that is communicated between the executions is called the streaming “state.” Data‐
Frame operations can be broadly classified into stateless and stateful operations based
on whether executing the operation incrementally requires maintaining a state. In the
rest of this section, we are going to explore the distinction between stateless and state‐
ful operations and how their presence in a streaming query requires different runtime
configuration and resource management.

234 | Chapter 8: Structured Streaming

https://oreil.ly/dL7mc
https://oreil.ly/dL7mc

Some logical operations are fundamentally either impractical or
very expensive to compute incrementally, and hence they are not
supported in Structured Streaming. For example, any attempt to
start a streaming query with an operation like cube() or rollup()
will throw an UnsupportedOperationException.

Stateless Transformations
All projection operations (e.g., select(), explode(), map(), flatMap()) and selec‐
tion operations (e.g., filter(), where()) process each input record individually
without needing any information from previous rows. This lack of dependence on
prior input data makes them stateless operations.

A streaming query having only stateless operations supports the append and update
output modes, but not complete mode. This makes sense: since any processed output
row of such a query cannot be modified by any future data, it can be written out to all
streaming sinks in append mode (including append-only ones, like files of any for‐
mat). On the other hand, such queries naturally do not combine information across
input records, and therefore may not reduce the volume of the data in the result.
Complete mode is not supported because storing the ever-growing result data is usu‐
ally costly. This is in sharp contrast with stateful transformations, as we will discuss
next.

Stateful Transformations
The simplest example of a stateful transformation is DataFrame.groupBy().count(),
which generates a running count of the number of records received since the begin‐
ning of the query. In every micro-batch, the incremental plan adds the count of new
records to the previous count generated by the previous micro-batch. This partial
count communicated between plans is the state. This state is maintained in the mem‐
ory of the Spark executors and is checkpointed to the configured location in order to
tolerate failures. While Spark SQL automatically manages the life cycle of this state to
ensure correct results, you typically have to tweak a few knobs to control the resource
usage for maintaining state. In this section, we are going to explore how different
stateful operators manage their state under the hood.

Data Transformations | 235

Distributed and fault-tolerant state management
Recall from Chapters 1 and 2 that a Spark application running in a cluster has a
driver and one or more executors. Spark’s scheduler running in the driver breaks
down your high-level operations into smaller tasks and puts them in task queues, and
as resources become available, the executors pull the tasks from the queues to execute
them. Each micro-batch in a streaming query essentially performs one such set of
tasks that read new data from streaming sources and write updated output to
streaming sinks. For stateful stream processing queries, besides writing to sinks, each
micro-batch of tasks generates intermediate state data which will be consumed by the
next micro-batch. This state data generation is completely partitioned and distributed
(as all reading, writing, and processing is in Spark), and it is cached in the executor
memory for efficient consumption. This is illustrated in Figure 8-6, which shows how
the state is managed in our original streaming word count query.

Figure 8-6. Distributed state management in Structured Streaming

Each micro-batch reads a new set of words, shuffles them within the executors to
group them, computes the counts within the micro-batch, and finally adds them to
the running counts to produce the new counts. These new counts are both the output
and the state for the next micro-batch, and hence they are cached in the memory of
the executors. The next micro-batch of data is grouped between executors in exactly
the same way as before, so that each word is always processed by the same executor,
and can therefore locally read and update its running count.

236 | Chapter 8: Structured Streaming

However, it is not sufficient to just keep this state in memory, as any failure (either of
an executor or of the entire application) will cause the in-memory state to be lost. To
avoid loss, we synchronously save the key/value state update as change logs in the
checkpoint location provided by the user. These changes are co-versioned with the
offset ranges processed in each batch, and the required version of the state can be
automatically reconstructed by reading the checkpointed logs. In case of any failure,
Structured Streaming is able to re-execute the failed micro-batch by reprocessing the
same input data along with the same state that it had before that micro-batch, thus
producing the same output data as it would have if there had been no failure. This is
critical for ensuring end-to-end exactly-once guarantees.

To summarize, for all stateful operations, Structured Streaming ensures the correct‐
ness of the operation by automatically saving and restoring the state in a distributed
manner. Depending on the stateful operation, all you may have to do is tune the state
cleanup policy such that old keys and values can be automatically dropped from the
cached state. This is what we will discuss next.

Types of stateful operations
The essence of streaming state is to retain summaries of past data. Sometimes old
summaries need to be cleaned up from the state to make room for new summaries.
Based on how this is done, we can distinguish two types of stateful operations:

Managed stateful operations
These automatically identify and clean up old state, based on an operation-
specific definition of “old.” You can tune what is defined as old in order to control
the resource usage (e.g., executor memory used to store state). The operations
that fall into this category are those for:

• Streaming aggregations
• Stream–stream joins
• Streaming deduplication

Unmanaged stateful operations
These operations let you define your own custom state cleanup logic. The opera‐
tions in this category are:

• MapGroupsWithState

• FlatMapGroupsWithState

These operations allow you to define arbitrary stateful operations (sessionization,
etc.).

Each of these operations are discussed in detail in the following sections.

Data Transformations | 237

Stateful Streaming Aggregations
Structured Streaming can incrementally execute most DataFrame aggregation opera‐
tions. You can aggregate data by keys (e.g., streaming word count) and/or by time
(e.g., count records received every hour). In this section, we are going to discuss the
semantics and operational details of tuning these different types of streaming aggre‐
gations. We’ll also briefly discuss the few types of aggregations that are not supported
in streaming. Let’s begin with aggregations not involving time.

Aggregations Not Based on Time
Aggregations not involving time can be broadly classified into two categories:

Global aggregations
Aggregations across all the data in the stream. For example, say you have a
stream of sensor readings as a streaming DataFrame named sensorReadings.
You can calculate the running count of the total number of readings received
with the following query:

In Python
runningCount = sensorReadings.groupBy().count()

// In Scala
val runningCount = sensorReadings.groupBy().count()

You cannot use direct aggregation operations like Data
Frame.count() and Dataset.reduce() on streaming Data‐
Frames. This is because, for static DataFrames, these
operations immediately return the final computed aggregates,
whereas for streaming DataFrames the aggregates have to be
continuously updated. Therefore, you have to always use Data
Frame.groupBy() or Dataset.groupByKey() for aggregations
on streaming DataFrames.

Grouped aggregations
Aggregations within each group or key present in the data stream. For example, if
sensorReadings contains data from multiple sensors, you can calculate the run‐
ning average reading of each sensor (say, for setting up a baseline value for each
sensor) with the following:

In Python
baselineValues = sensorReadings.groupBy("sensorId").mean("value")

// In Scala
val baselineValues = sensorReadings.groupBy("sensorId").mean("value")

238 | Chapter 8: Structured Streaming

Besides counts and averages, streaming DataFrames support the following types of
aggregations (similar to batch DataFrames):

All built-in aggregation functions
sum(), mean(), stddev(), countDistinct(), collect_set(), approx_count_dis
tinct(), etc. Refer to the API documentation (Python and Scala) for more
details.

Multiple aggregations computed together
You can apply multiple aggregation functions to be computed together in the fol‐
lowing manner:

In Python
from pyspark.sql.functions import *
multipleAggs = (sensorReadings
 .groupBy("sensorId")
 .agg(count("*"), mean("value").alias("baselineValue"),
 collect_set("errorCode").alias("allErrorCodes")))

// In Scala
import org.apache.spark.sql.functions.*
val multipleAggs = sensorReadings
 .groupBy("sensorId")
 .agg(count("*"), mean("value").alias("baselineValue"),
 collect_set("errorCode").alias("allErrorCodes"))

User-defined aggregation functions
All user-defined aggregation functions are supported. See the Spark SQL pro‐
gramming guide for more details on untyped and typed user-defined aggregation
functions.

Regarding the execution of such streaming aggregations, we have already illustrated
in previous sections how the running aggregates are maintained as a distributed state.
In addition to this, there are two very important points to remember for aggregations
not based on time: the output mode to use for such queries and planning the resource
usage by state. These are discussed toward the end of this section. Next, we are going
to discuss aggregations that combine data within time windows.

Aggregations with Event-Time Windows
In many cases, rather than running aggregations over the whole stream, you want
aggregations over data bucketed by time windows. Continuing with our sensor exam‐
ple, say each sensor is expected to send at most one reading per minute and we want
to detect if any sensor is reporting an unusually high number of times. To find such
anomalies, we can count the number of readings received from each sensor in five-
minute intervals. In addition, for robustness, we should be computing the time inter‐
val based on when the data was generated at the sensor and not based on when the

Stateful Streaming Aggregations | 239

https://oreil.ly/olWT0
https://oreil.ly/gvoeK
https://oreil.ly/8nvJ2
https://oreil.ly/8nvJ2

data was received, as any transit delay would skew the results. In other words, we
want to use the event time—that is, the timestamp in the record representing when
the reading was generated. Say the sensorReadings DataFrame has the generation
timestamp as a column named eventTime. We can express this five-minute count as
follows:

In Python
from pyspark.sql.functions import *
(sensorReadings
 .groupBy("sensorId", window("eventTime", "5 minute"))
 .count())

// In Scala
import org.apache.spark.sql.functions.*
sensorReadings
 .groupBy("sensorId", window("eventTime", "5 minute"))
 .count()

The key thing to note here is the window() function, which allows us to express the
five-minute windows as a dynamically computed grouping column. When started,
this query will effectively do the following for each sensor reading:

• Use the eventTime value to compute the five-minute time window the sensor
reading falls into.

• Group the reading based on the composite group (<computed window>,

SensorId).
• Update the count of the composite group.

Let’s understand this with an illustrative example. Figure 8-7 shows how a few sensor
readings are mapped to groups of five-minute tumbling (i.e., nonoverlapping) win‐
dows based on their event time. The two timelines show when each received event
will be processed by Structured Streaming, and the timestamp in the event data (usu‐
ally, the time when the event was generated at the sensor).

240 | Chapter 8: Structured Streaming

Figure 8-7. Mapping of event time to tumbling windows

Each five-minute window over event time is considered for the grouping based on
which the counts will be calculated. Note that events may come late and out of order
in terms of event time. As shown in the figure, the event with event time 12:07 was
received and processed after the event with time 12:11. However, irrespective of when
they arrive, each event is assigned to the appropriate group based on its event time. In
fact, depending on the window specification, each event can be assigned to multiple
groups. For example, if you want to compute counts corresponding to 10-minute
windows sliding every 5 minutes, then you can do the following:

In Python
(sensorReadings
 .groupBy("sensorId", window("eventTime", "10 minute", "5 minute"))
 .count())

// In Scala
sensorReadings
 .groupBy("sensorId", window("eventTime", "10 minute", "5 minute"))
 .count()

In this query, every event will be assigned to two overlapping windows as illustrated
in Figure 8-8.

Stateful Streaming Aggregations | 241

Figure 8-8. Mapping of event time to multiple overlapping windows

Each unique tuple of (<assigned time window>, sensorId) is considered a dynam‐
ically generated group for which counts will be computed. For example, the event
[eventTime = 12:07, sensorId = id1] gets mapped to two time windows and
therefore two groups, (12:00-12:10, id1) and (12:05-12:15, id1). The counts for
these two windows are each incremented by 1. Figure 8-9 illustrates this for the previ‐
ously shown events.

Assuming that the input records were processed with a trigger interval of five
minutes, the tables at the bottom of Figure 8-9 show the state of the result table (i.e.,
the counts) at each of the micro-batches. As the event time moves forward, new
groups are automatically created and their aggregates are automatically updated. Late
and out-of-order events get handled automatically, as they simply update older
groups.

242 | Chapter 8: Structured Streaming

Figure 8-9. Updated counts in the result table after each five-minute trigger

However, from the point of view of resource usage, this poses a different problem—
indefinitely growing state size. As new groups are created corresponding to the latest
time windows, the older groups continue to occupy the state memory, waiting for any
late data to update them. Even if in practice there is a bound on how late the input
data can be (e.g., data cannot be more than seven days late), the query does not know
that information. Hence, it does not know when to consider a window as “too old to
receive updates” and drop it from the state. To provide a lateness bound to a query
(and prevent unbounded state), you can specify watermarks, as we discuss next.

Handling late data with watermarks
A watermark is defined as a moving threshold in event time that trails behind the
maximum event time seen by the query in the processed data. The trailing gap,
known as the watermark delay, defines how long the engine will wait for late data to
arrive. By knowing the point at which no more data will arrive for a given group, the
engine can automatically finalize the aggregates of certain groups and drop them
from the state. This limits the total amount of state that the engine has to maintain to
compute the results of the query.

For example, suppose you know that your sensor data will not be late by more than
10 minutes. Then you can set the watermark as follows:

In Python
(sensorReadings
 .withWatermark("eventTime", "10 minutes")
 .groupBy("sensorId", window("eventTime", "10 minutes", "5 minutes"))
 .mean("value"))

Stateful Streaming Aggregations | 243

// In Scala
sensorReadings
 .withWatermark("eventTime", "10 minutes")
 .groupBy("sensorId", window("eventTime", "10 minutes", "5 minute"))
 .mean("value")

Note that you must call withWatermark() before the groupBy() and on the same
timestamp column as that used to define windows. When this query is executed,
Structured Streaming will continuously track the maximum observed value of the
eventTime column and accordingly update the watermark, filter the “too late” data,
and clear old state. That is, any data late by more than 10 minutes will be ignored, and
all time windows that are more than 10 minutes older than the latest (by event time)
input data will be cleaned up from the state. To clarify how this query will be exe‐
cuted, consider the timeline in Figure 8-10 showing how a selection of input records
were processed.

Figure 8-10. Illustration of how the engine tracks the maximum event time across events,
updates the watermark, and accordingly handles late data

This figure shows a two-dimensional plot of records processed in terms of their pro‐
cessing times (x-axis) and their event times (y-axis). The records are processed in
micro-batches of five minutes and marked with circles. The tables at the bottom show
the state of the result table after each micro-batch completes.

Each record was received and processed after all the records to its left. Consider the
two records [12:15, id1] (processed around 12:17) and [12:13, id3] (processed
around 12:18). The record for id3 was considered late (and therefore marked in solid

244 | Chapter 8: Structured Streaming

red) because it was generated by the sensor before the record for id1 but it was pro‐
cessed after the latter. However, in the micro-batch for processing-time range
12:15–12:20, the watermark used was 12:04 which was calculated based on the maxi‐
mum event time seen till the previous micro-batch (that is, 12:14 minus the 10-
minute watermark delay). Therefore, the late record [12:13, id3] was not
considered to be too late and was successfully counted. In contrast, in the next micro-
batch, the record [12:04, id1] was considered to be too late compared to the new
watermark of 12:11 and was discarded.

You can set the watermark delay based on the requirements of your application—
larger values for this parameter allow data to arrive later, but at the cost of increased
state size (i.e., memory usage), and vice versa.

Semantic guarantees with watermarks. Before we conclude this section about water‐
marks, let’s consider the precise semantic guarantee that watermarking provides. A
watermark of 10 minutes guarantees that the engine will never drop any data that is
delayed by less than 10 minutes compared to the latest event time seen in the input
data. However, the guarantee is strict only in one direction. Data delayed by more
than 10 minutes is not guaranteed to be dropped—that is, it may get aggregated.
Whether an input record more than 10 minutes late will actually be aggregated or not
depends on the exact timing of when the record was received and when the micro-
batch processing it was triggered.

Supported output modes
Unlike streaming aggregations not involving time, aggregations with time windows
can use all three output modes. However, there are other implications regarding state
cleanup that you need to be aware of, depending on the mode:

Update mode
In this mode, every micro-batch will output only the rows where the aggregate
got updated. This mode can be used with all types of aggregations. Specifically
for time window aggregations, watermarking will ensure that the state will get
cleaned up regularly. This is the most useful and efficient mode to run queries
with streaming aggregations. However, you cannot use this mode to write aggre‐
gates to append-only streaming sinks, such as any file-based formats like Parquet
and ORC (unless you use Delta Lake, which we will discuss in the next chapter).

Complete mode
In this mode, every micro-batch will output all the updated aggregates, irrespec‐
tive of their age or whether they contain changes. While this mode can be used
on all types of aggregations, for time window aggregations, using complete mode
means state will not be cleaned up even if a watermark is specified. Outputting all
aggregates requires all past state, and hence aggregation data must be preserved

Stateful Streaming Aggregations | 245

even if a watermark has been defined. Use this mode on time window aggrega‐
tions with caution, as this can lead to an indefinite increase in state size and
memory usage.

Append mode
This mode can be used only with aggregations on event-time windows and with
watermarking enabled. Recall that append mode does not allow previously output
results to change. For any aggregation without watermarks, every aggregate may
be updated with any future data, and hence these cannot be output in append
mode. Only when watermarking is enabled on aggregations on event-time win‐
dows does the query know when an aggregate is not going to update any further.
Hence, instead of outputting the updated rows, append mode outputs each key
and its final aggregate value only when the watermark ensures that the aggregate
is not going to be updated again. The advantage of this mode is that it allows you
to write aggregates to append-only streaming sinks (e.g., files). The disadvantage
is that the output will be delayed by the watermark duration—the query has to
wait for the trailing watermark to exceed the time window of a key before its
aggregate can be finalized.

Streaming Joins
Structured Streaming supports joining a streaming Dataset with another static or
streaming Dataset. In this section we will explore what types of joins (inner, outer,
etc.) are supported, and how to use watermarks to limit the state stored for stateful
joins. We will start with the simple case of joining a data stream and a static Dataset.

Stream–Static Joins
Many use cases require joining a data stream with a static Dataset. For example, let’s
consider the case of ad monetization. Suppose you are an advertisement company
that shows ads on websites and you make money when users click on them. Let’s
assume that you have a static Dataset of all the ads to be shown (known as impres‐
sions), and another stream of events for each time users click on the displayed ads. To
calculate the click revenue, you have to match each click in the event stream to the
corresponding ad impression in the table. Let’s first represent the data as two Data‐
Frames, a static one and a streaming one, as shown here:

In Python
Static DataFrame [adId: String, impressionTime: Timestamp, ...]
reading from your static data source
impressionsStatic = spark.read. ...

Streaming DataFrame [adId: String, clickTime: Timestamp, ...]
reading from your streaming source
clicksStream = spark.readStream. ...

246 | Chapter 8: Structured Streaming

// In Scala
// Static DataFrame [adId: String, impressionTime: Timestamp, ...]
// reading from your static data source
val impressionsStatic = spark.read. ...

// Streaming DataFrame [adId: String, clickTime: Timestamp, ...]
// reading from your streaming source
val clicksStream = spark.readStream. ...

To match the clicks with the impressions, you can simply apply an inner equi-join
between them using the common adId column:

In Python
matched = clicksStream.join(impressionsStatic, "adId")

// In Scala
val matched = clicksStream.join(impressionsStatic, "adId")

This is the same code as you would have written if both impressions and clicks were
static DataFrames—the only difference is that you use spark.read() for batch pro‐
cessing and spark.readStream() for a stream. When this code is executed, every
micro-batch of clicks is inner-joined against the static impression table to generate
the output stream of matched events.

Besides inner joins, Structured Streaming also supports two types of stream–static
outer joins:

• Left outer join when the left side is a streaming DataFrame
• Right outer join when the right side is a streaming DataFrame

The other kinds of outer joins (e.g., full outer and left outer with a streaming Data‐
Frame on the right) are not supported because they are not easy to run incrementally.
In both supported cases, the code is exactly as it would be for a left/right outer join
between two static DataFrames:

In Python
matched = clicksStream.join(impressionsStatic, "adId", "leftOuter")

// In Scala
val matched = clicksStream.join(impressionsStatic, Seq("adId"), "leftOuter")

There are a few key points to note about stream–static joins:

• Stream–static joins are stateless operations, and therefore do not require any kind
of watermarking.

• The static DataFrame is read repeatedly while joining with the streaming data of
every micro-batch, so you can cache the static DataFrame to speed up the reads.

• If the underlying data in the data source on which the static DataFrame was
defined changes, whether those changes are seen by the streaming query depends

Streaming Joins | 247

on the specific behavior of the data source. For example, if the static DataFrame
was defined on files, then changes to those files (e.g., appends) will not be picked
up until the streaming query is restarted.

In this stream–static example, we made a significant assumption: that the impression
table is a static table. In reality, there will be a stream of new impressions generated as
new ads are displayed. While stream–static joins are good for enriching data in one
stream with additional static (or slowly changing) information, this approach is
insufficient when both sources of data are changing rapidly. For that you need
stream–stream joins, which we will discuss next.

Stream–Stream Joins
The challenge of generating joins between two data streams is that, at any point in
time, the view of either Dataset is incomplete, making it much harder to find matches
between inputs. The matching events from the two streams may arrive in any order
and may be arbitrarily delayed. For example, in our advertising use case an impres‐
sion event and its corresponding click event may arrive out of order, with arbitrary
delays between them. Structured Streaming accounts for such delays by buffering the
input data from both sides as the streaming state, and continuously checking for
matches as new data is received. The conceptual idea is sketched out in Figure 8-11.

Figure 8-11. Ad monetization using a stream–stream join

Let’s consider this in more detail, first with inner joins and then with outer joins.

Inner joins with optional watermarking

Say we have redefined our impressions DataFrame to be a streaming DataFrame. To
get the stream of matching impressions and their corresponding clicks, we can use
the same code we used earlier for static joins and stream–static joins:

248 | Chapter 8: Structured Streaming

In Python
Streaming DataFrame [adId: String, impressionTime: Timestamp, ...]
impressions = spark.readStream. ...

Streaming DataFrame[adId: String, clickTime: Timestamp, ...]
clicks = spark.readStream. ...
matched = impressions.join(clicks, "adId")

// In Scala
// Streaming DataFrame [adId: String, impressionTime: Timestamp, ...]
val impressions = spark.readStream. ...

// Streaming DataFrame[adId: String, clickTime: Timestamp, ...]
val clicks = spark.readStream. ...
val matched = impressions.join(clicks, "adId")

Even though the code is the same, the execution is completely different. When this
query is executed, the processing engine will recognize it to be a stream–stream join
instead of a stream–static join. The engine will buffer all clicks and impressions as
state, and will generate a matching impression-and-click as soon as a received click
matches a buffered impression (or vice versa, depending on which was received first).
Let’s visualize how this inner join works using the example timeline of events in
Figure 8-12.

Figure 8-12. Illustrative timeline of clicks, impressions, and their joined output

In Figure 8-12, the blue dots represent the event times of impression and click events
that were received across different micro-batches (separated by the dashed grey
lines). For the purposes of this illustration, assume that each event was actually
received at the same wall clock time as the event time. Note the different scenarios
under which the related events are being joined. Both events with adId = ⧮ were

Streaming Joins | 249

received in the same micro-batch, so their joined output was generated by that micro-
batch. However, for adId = ⧉ the impression was received at 12:04, much earlier
than its corresponding click at 12:13. Structured Streaming will first receive the
impression at 12:04 and buffer it in the state. For each received click, the engine will
try to join it with all buffered impressions (and vice versa). Eventually, in a later
micro-batch running around 12:13, the engine receives the click for adId = ⧉ and
generates the joined output.

However, in this query, we have not given any indication of how long the engine
should buffer an event to find a match. Therefore, the engine may buffer an event for‐
ever and accumulate an unbounded amount of streaming state. To limit the stream‐
ing state maintained by stream–stream joins, you need to know the following
information about your use case:

• What is the maximum time range between the generation of the two events at their
respective sources? In the context of our use case, let’s assume that a click can
occur within zero seconds to one hour after the corresponding impression.

• What is the maximum duration an event can be delayed in transit between the
source and the processing engine? For example, ad clicks from a browser may get
delayed due to intermittent connectivity and arrive much later than expected,
and out of order. Let’s say that impressions and clicks can be delayed by at most
two and three hours, respectively.

These delay limits and event-time constraints can be encoded in the DataFrame oper‐
ations using watermarks and time range conditions. In other words, you will have to
do the following additional steps in the join to ensure state cleanup:

1. Define watermark delays on both inputs, such that the engine knows how
delayed the input can be (similar to with streaming aggregations).

2. Define a constraint on event time across the two inputs, such that the engine can
figure out when old rows of one input are not going to be required (i.e., will not
satisfy the time constraint) for matches with the other input. This constraint can
be defined in one of the following ways:
a. Time range join conditions (e.g., join condition = "leftTime BETWEEN

rightTime AND rightTime + INTERVAL 1 HOUR")
b. Join on event-time windows (e.g., join condition = "leftTimeWindow =

rightTimeWindow")

In our advertisement use case, our inner join code will get a little bit more
complicated:

250 | Chapter 8: Structured Streaming

In Python
Define watermarks
impressionsWithWatermark = (impressions
 .selectExpr("adId AS impressionAdId", "impressionTime")
 .withWatermark("impressionTime", "2 hours"))

clicksWithWatermark = (clicks
 .selectExpr("adId AS clickAdId", "clickTime")
 .withWatermark("clickTime", "3 hours"))

Inner join with time range conditions
(impressionsWithWatermark.join(clicksWithWatermark,
 expr("""
 clickAdId = impressionAdId AND
 clickTime BETWEEN impressionTime AND impressionTime + interval 1 hour""")))

// In Scala
// Define watermarks
val impressionsWithWatermark = impressions
 .selectExpr("adId AS impressionAdId", "impressionTime")
 .withWatermark("impressionTime", "2 hours ")

val clicksWithWatermark = clicks
 .selectExpr("adId AS clickAdId", "clickTime")
 .withWatermark("clickTime", "3 hours")

// Inner join with time range conditions
impressionsWithWatermark.join(clicksWithWatermark,
 expr("""
 clickAdId = impressionAdId AND
 clickTime BETWEEN impressionTime AND impressionTime + interval 1 hour"""))

With these time constraints for each event, the processing engine can automatically
calculate how long events need to be buffered to generate correct results, and when
the events can be dropped from the state. For example, it will evaluate the following
(illustrated in Figure 8-13):

• Impressions need to be buffered for at most four hours (in event time), as a
three-hour-late click may match with an impression made four hours ago (i.e.,
three hours late + up to one-hour delay between the impression and click).

• Conversely, clicks need to be buffered for at most two hours (in event time), as a
two-hour-late impression may match with a click received two hours ago.

Streaming Joins | 251

Figure 8-13. Structured Streaming automatically calculates thresholds for state cleanup
using watermark delays and time range conditions

There are a few key points to remember about inner joins:

• For inner joins, specifying watermarking and event-time constraints are both
optional. In other words, at the risk of potentially unbounded state, you may
choose not to specify them. Only when both are specified will you get state
cleanup.

• Similar to the guarantees provided by watermarking on aggregations, a water‐
mark delay of two hours guarantees that the engine will never drop or not match
any data that is less than two hours delayed, but data delayed by more than two
hours may or may not get processed.

Outer joins with watermarking
The previous inner join will output only those ads for which both events have been
received. In other words, ads that received no clicks will not be reported at all.
Instead, you may want all ad impressions to be reported, with or without the associ‐
ated click data, to enable additional analysis later (e.g., click-through rates). This
brings us to stream–stream outer joins. All you need to do to implement this is specify
the outer join type:

In Python
Left outer join with time range conditions
(impressionsWithWatermark.join(clicksWithWatermark,
 expr("""
 clickAdId = impressionAdId AND
 clickTime BETWEEN impressionTime AND impressionTime + interval 1 hour"""),
 "leftOuter")) # only change: set the outer join type

// In Scala
// Left outer join with time range conditions

252 | Chapter 8: Structured Streaming

impressionsWithWatermark.join(clicksWithWatermark,
 expr("""
 clickAdId = impressionAdId AND
 clickTime BETWEEN impressionTime AND impressionTime + interval 1 hour"""),
 "leftOuter") // Only change: set the outer join type

As expected of outer joins, this query will start generating output for every impres‐
sion, with or without (i.e., using NULLs) the click data. However, there are a few addi‐
tional points to note about outer joins:

• Unlike with inner joins, the watermark delay and event-time constraints are not
optional for outer joins. This is because for generating the NULL results, the
engine must know when an event is not going to match with anything else in the
future. For correct outer join results and state cleanup, the watermarking and
event-time constraints must be specified.

• Consequently, the outer NULL results will be generated with a delay as the engine
has to wait for a while to ensure that there neither were nor would be any
matches. This delay is the maximum buffering time (with respect to event time)
calculated by the engine for each event as discussed in the previous section (i.e.,
four hours for impressions and two hours for clicks).

Arbitrary Stateful Computations
Many use cases require more complicated logic than the SQL operations we have dis‐
cussed up to now. For example, say you want to track the statuses (e.g., signed in,
busy, idle) of users by tracking their activities (e.g., clicks) in real time. To build this
stream processing pipeline, you will have to track each user’s activity history as a state
with arbitrary data structure, and continuously apply arbitrarily complex changes on
the data structure based on the user’s actions. The operation mapGroupsWithState()
and its more flexible counterpart flatMapGroupsWithState() are designed for such
complex analytical use cases.

As of Spark 3.0, these two operations are only available in Scala and
Java.

In this section, we will start with a simple example with mapGroupsWithState() to
illustrate the four key steps to modeling custom state data and defining custom oper‐
ations on it. Then we will discuss the concept of timeouts and how you can use them
to expire state that has not been updated for a while. We will end with
flatMapGroupsWithState(), which gives you even more flexibility.

Arbitrary Stateful Computations | 253

Modeling Arbitrary Stateful Operations with mapGroupsWithState()
State with an arbitrary schema and arbitrary transformations on the state is modeled
as a user-defined function that takes the previous version of the state value and new
data as inputs, and generates the updated state and computed result as outputs. Pro‐
grammatically in Scala, you will have to define a function with the following signature
(K, V, S, and U are data types, as explained shortly):

// In Scala
def arbitraryStateUpdateFunction(
 key: K,
 newDataForKey: Iterator[V],
 previousStateForKey: GroupState[S]
): U

This function is provided to a streaming query using the operations groupByKey()
and mapGroupsWithState(), as follows:

// In Scala
val inputDataset: Dataset[V] = // input streaming Dataset

inputDataset
 .groupByKey(keyFunction) // keyFunction() generates key from input
 .mapGroupsWithState(arbitraryStateUpdateFunction)

When this streaming query is started, in each micro-batch Spark will call this
arbitraryStateUpdateFunction() for each unique key in the micro-batch’s data.
Let’s take a closer look at what the parameters are and what parameter values Spark
will call the function with:

key: K

K is the data type of the common keys defined in the state and the input. Spark
will call this function for each unique key in the data.

newDataForKey: Iterator[V]

V is the data type of the input Dataset. When Spark calls this function for a key,
this parameter will have all the new input data corresponding to that key. Note
that the order in which the input data objects will be present in the iterator is not
defined.

previousStateForKey: GroupState[S]

S is the data type of the arbitrary state you are going to maintain, and Group
State[S] is a typed wrapper object that provides methods to access and manage
the state value. When Spark calls this function for a key, this object will provide
the state value set the previous time Spark called this function for that key (i.e.,
for one of the previous micro-batches).

254 | Chapter 8: Structured Streaming

U

U is the data type of the output of the function.

There are a couple of additional parameters that you have to pro‐
vide. All the types (K, V, S, U) must be encodable by Spark SQL’s
encoders. Accordingly, in mapGroupsWithState(), you have to pro‐
vide the typed encoders for S and U either implicitly in Scala or
explicitly in Java. See “Dataset Encoders” on page 168 in Chapter 6
for more details.

Let’s examine how to express the desired state update function in this format with an
example. Say we want to understand user behavior based on their actions. Conceptu‐
ally, it’s quite simple: in every micro-batch, for each active user, we will use the new
actions taken by the user and update the user’s “status.” Programmatically, we can
define the state update function with the following steps:

1. Define the data types. We need to define the exact types of K, V, S, and U. In this
case, we’ll use the following:
a. Input data (V) = case class UserAction(userId: String, action:

String)

b. Keys (K) = String (that is, the userId)
c. State (S) = case class UserStatus(userId: String, active: Boolean)
d. Output (U) = UserStatus, as we want to output the latest user status

Note that all these data types are supported in encoders.
2. Define the function. Based on the chosen types, let’s translate the conceptual idea

into code. When this function is called with new user actions, there are two main
situations we need to handle: whether a previous state (i.e., previous user status)
exists for that key (i.e., userId) or not. Accordingly, we will initialize the user’s
status, or update the existing status with the new actions. We will explicitly
update the state with the new running count, and finally return the updated
userId-userStatus pair:

// In Scala
import org.apache.spark.sql.streaming._

 def updateUserStatus(
 userId: String,
 newActions: Iterator[UserAction],
 state: GroupState[UserStatus]): UserStatus = {

 val userStatus = state.getOption.getOrElse {
 new UserStatus(userId, false)

Arbitrary Stateful Computations | 255

 }
 newActions.foreach { action =>
 userStatus.updateWith(action)
 }
 state.update(userStatus)
 return userStatus
}

3. Apply the function on the actions. We will group the input actions Dataset
using groupByKey() and then apply the updateUserStatus function using
mapGroupsWithState():

// In Scala
val userActions: Dataset[UserAction] = ...
val latestStatuses = userActions
 .groupByKey(userAction => userAction.userId)
 .mapGroupsWithState(updateUserStatus _)

Once we start this streaming query with console output, we will see the updated user
statuses being printed.

Before we move on to more advanced topics, there are a few notable points to
remember:

• When the function is called, there is no well-defined order for the input records
in the new data iterator (e.g., newActions). If you need to update the state with
the input records in a specific order (e.g., in the order the actions were per‐
formed), then you have to explicitly reorder them (e.g., based on the event time‐
stamp or some other ordering ID). In fact, if there is a possibility that actions
may be read out of order from the source, then you have to consider the possibil‐
ity that a future micro-batch may receive data that should be processed before the
data in the current batch. In that case, you have to buffer the records as part of
the state.

• In a micro-batch, the function is called on a key once only if the micro-batch has
data for that key. For example, if a user becomes inactive and provides no new
actions for a long time, then by default, the function will not be called for a long
time. If you want to update or remove state based on a user’s inactivity over an
extended period you have to use timeouts, which we will discuss in the next
section.

• The output of mapGroupsWithState() is assumed by the incremental processing
engine to be continuously updated key/value records, similar to the output of
aggregations. This limits what operations are supported in the query after
mapGroupsWithState(), and what sinks are supported. For example, appending
the output into files is not supported. If you want to apply arbitrary stateful

256 | Chapter 8: Structured Streaming

operations with greater flexibility, then you have to use flatMapGroupsWith
State(). We will discuss that after timeouts.

Using Timeouts to Manage Inactive Groups
In the preceding example of tracking active user sessions, as more users become
active, the number of keys in the state will keep increasing, and so will the memory
used by the state. Now, in a real-world scenario, users are likely not going to stay
active all the time. It may not be very useful to keep the status of inactive users in the
state, as it is not going to change again until those users become active again. Hence,
we may want to explicitly drop all information for inactive users. However, a user
may not explicitly take any action to become inactive (e.g., explicitly logging off), and
we may have to define inactivity as lack of any action for a threshold duration. This
becomes tricky to encode in the function, as the function is not called for a user until
there are new actions from that user.

To encode time-based inactivity, mapGroupsWithState() supports timeouts that are
defined as follows:

• Each time the function is called on a key, a timeout can be set on the key based
on a duration or a threshold timestamp.

• If that key does not receive any data, such that the timeout condition is met, the
key is marked as “timed out.” The next micro-batch will call the function on this
timed-out key even if there is no data for that key in that micro-batch. In this
special function call, the new input data iterator will be empty (since there is no
new data) and GroupState.hasTimedOut() will return true. This is the best way
to identify inside the function whether the call was due to new data or a timeout.

There are two types of timeouts, based on our two notions of time: processing time
and event time. The processing-time timeout is the simpler of the two to use, so we’ll
start with that.

Processing-time timeouts
Processing-time timeouts are based on the system time (also known as the wall clock
time) of the machine running the streaming query and are defined as follows: if a key
last received data at system timestamp T, and the current timestamp is more than (T
+ <timeout duration>), then the function will be called again with a new empty
data iterator.

Let’s investigate how to use timeouts by updating our user example to remove a user’s
state based on one hour of inactivity. We will make three changes:

Arbitrary Stateful Computations | 257

• In mapGroupsWithState(), we will specify the timeout as GroupStateTime
out.ProcessingTimeTimeout.

• In the state update function, before updating the state with new data, we have to
check whether the state has timed out or not. Accordingly, we will update or
remove the state.

• In addition, every time we update the state with new data, we will set the timeout
duration.

Here’s the updated code:

// In Scala
def updateUserStatus(
 userId: String,
 newActions: Iterator[UserAction],
 state: GroupState[UserStatus]): UserStatus = {

 if (!state.hasTimedOut) { // Was not called due to timeout
 val userStatus = state.getOption.getOrElse {
 new UserStatus(userId, false)
 }
 newActions.foreach { action => userStatus.updateWith(action) }
 state.update(userStatus)
 state.setTimeoutDuration("1 hour") // Set timeout duration
 return userStatus

 } else {
 val userStatus = state.get()
 state.remove() // Remove state when timed out
 return userStatus.asInactive() // Return inactive user's status
 }
}

val latestStatuses = userActions
 .groupByKey(userAction => userAction.userId)
 .mapGroupsWithState(
 GroupStateTimeout.ProcessingTimeTimeout)(
 updateUserStatus _)

This query will automatically clean up the state of users for whom the query has not
processed any data for more than an hour. However, there are a few points to note
about timeouts:

• The timeout set by the last call to the function is automatically cancelled when
the function is called again, either for the new received data or for the timeout.
Hence, whenever the function is called, the timeout duration or timestamp needs
to be explicitly set to enable the timeout.

• Since the timeouts are processed during the micro-batches, the timing of
their execution is imprecise and depends heavily on the trigger interval and

258 | Chapter 8: Structured Streaming

micro-batch processing times. Therefore, it is not advised to use timeouts for
precise timing control.

• While processing-time timeouts are simple to reason about, they are not robust
to slowdowns and downtimes. If the streaming query suffers a downtime of more
than one hour, then after restart, all the keys in the state will be timed out because
more than one hour has passed since each key received data. Similar wide-scale
timeouts can occur if the query processes data slower than it is arriving at the
source (e.g., if data is arriving and getting buffered in Kafka). For example, if the
timeout is five minutes, then a sudden drop in processing rate (or spike in data
arrival rate) that causes a five-minute lag could produce spurious timeouts. To
avoid such issues we can use an event-time timeout, which we will discuss next.

Event-time timeouts
Instead of the system clock time, an event-time timeout is based on the event time in
the data (similar to time-based aggregations) and a watermark defined on the event
time. If a key is configured with a specific timeout timestamp of T (i.e., not a dura‐
tion), then that key will time out when the watermark exceeds T if no new data was
received for that key since the last time the function was called. Recall that the water‐
mark is a moving threshold that lags behind the maximum event time seen while pro‐
cessing the data. Hence, unlike system time, the watermark moves forward in time at
the same rate as the data is processed. This means (unlike with processing-time time‐
outs) any slowdown or downtime in query processing will not cause spurious
timeouts.

Let’s modify our example to use an event-time timeout. In addition to the changes we
already made for using the processing-time timeout, we will make the following
changes:

• Define watermarks on the input Dataset (assume that the class UserAction has
an eventTimestamp field). Recall that the watermark threshold represents the
acceptable amount of time by which input data can be late and out of order.

• Update mapGroupsWithState() to use EventTimeTimeout.
• Update the function to set the threshold timestamp at which the timeout will

occur. Note that event-time timeouts do not allow setting a timeout duration, like
processing-time timeouts. We will discuss the reason for this later. In this exam‐
ple, we will calculate this timeout as the current watermark plus one hour.

Here is the updated example:

Arbitrary Stateful Computations | 259

// In Scala
def updateUserStatus(
 userId: String,
 newActions: Iterator[UserAction],
 state: GroupState[UserStatus]):UserStatus = {

 if (!state.hasTimedOut) { // Was not called due to timeout
 val userStatus = if (state.getOption.getOrElse {
 new UserStatus()
 }
 newActions.foreach { action => userStatus.updateWith(action) }
 state.update(userStatus)

 // Set the timeout timestamp to the current watermark + 1 hour
 state.setTimeoutTimestamp(state.getCurrentWatermarkMs, "1 hour")
 return userStatus
 } else {
 val userStatus = state.get()
 state.remove()
 return userStatus.asInactive() }
}

val latestStatuses = userActions
 .withWatermark("eventTimestamp", "10 minutes")
 .groupByKey(userAction => userAction.userId)
 .mapGroupsWithState(
 GroupStateTimeout.EventTimeTimeout)(
 updateUserStatus _)

This query will be much more robust to spurious timeouts caused by restarts and
processing delays.

Here are a few points to note about event-time timeouts:

• Unlike in the previous example with processing-time timeouts, we have used
GroupState.setTimeoutTimestamp() instead of GroupState.setTimeoutDura
tion(). This is because with processing-time timeouts the duration is sufficient
to calculate the exact future timestamp (i.e., current system time + specified
duration) when the timeout would occur, but this is not the case for event-time
timeouts. Different applications may want to use different strategies to calculate
the threshold timestamp. In this example we simply calculate it based on the cur‐
rent watermark, but a different application may instead choose to calculate a key’s
timeout timestamp based on the maximum event-time timestamp seen for that
key (tracked and saved as part of the state).

• The timeout timestamp must be set to a value larger than the current watermark.
This is because the timeout is expected to happen when the timestamp crosses
the watermark, so it’s illogical to set the timestamp to a value already larger than
the current watermark.

260 | Chapter 8: Structured Streaming

Before we move on from timeouts, one last thing to remember is that you can use
these timeout mechanisms for more creative processing than fixed-duration time‐
outs. For example, you can implement an approximately periodic task (say, every
hour) on the state by saving the last task execution timestamp in the state and using
that to set the processing-time timeout duration, as shown in this code snippet:

// In Scala
timeoutDurationMs = lastTaskTimstampMs + periodIntervalMs -
groupState.getCurrentProcessingTimeMs()

Generalization with flatMapGroupsWithState()
There are two key limitations with mapGroupsWithState() that may limit the flexibil‐
ity that we want to implement more complex use cases (e.g., chained sessionizations):

• Every time mapGroupsWithState() is called, you have to return one and only one
record. For some applications, in some triggers, you may not want to output any‐
thing at all.

• With mapGroupsWithState(), due to the lack of more information about the
opaque state update function, the engine assumes that generated records are
updated key/value data pairs. Accordingly, it reasons about downstream opera‐
tions and allows or disallows some of them. For example, the DataFrame gener‐
ated using mapGroupsWithState() cannot be written out in append mode to files.
However, some applications may want to generate records that can be considered
as appends.

flatMapGroupsWithState() overcomes these limitations, at the cost of slightly more
complex syntax. It has two differences from mapGroupsWithState():

• The return type is an iterator, instead of a single object. This allows the function
to return any number of records, or, if needed, no records at all.

• It takes another parameter, called the operator output mode (not to be confused
with the query output modes we discussed earlier in the chapter), that defines
whether the output records are new records that can be appended (Output
Mode.Append) or updated key/value records (OutputMode.Update).

To illustrate the use of this function, let’s extend our user tracking example (we have
removed timeouts to keep the code simple). For example, if we want to generate alerts
only for certain user changes and we want to write the output alerts to files, we can do
the following:

// In Scala
def getUserAlerts(
 userId: String,
 newActions: Iterator[UserAction],

Arbitrary Stateful Computations | 261

 state: GroupState[UserStatus]): Iterator[UserAlert] = {

 val userStatus = state.getOption.getOrElse {
 new UserStatus(userId, false)
 }
 newActions.foreach { action =>
 userStatus.updateWith(action)
 }
 state.update(userStatus)

 // Generate any number of alerts
 return userStatus.generateAlerts().toIterator
}

val userAlerts = userActions
 .groupByKey(userAction => userAction.userId)
 .flatMapGroupsWithState(
 OutputMode.Append,
 GroupStateTimeout.NoTimeout)(
 getUserAlerts)

Performance Tuning
Structured Streaming uses the Spark SQL engine and therefore can be tuned with the
same parameters as those discussed for Spark SQL in Chapters 5 and 7. However,
unlike batch jobs that may process gigabytes to terabytes of data, micro-batch jobs
usually process much smaller volumes of data. Hence, a Spark cluster running
streaming queries usually needs to be tuned slightly differently. Here are a few con‐
siderations to keep in mind:

Cluster resource provisioning
Since Spark clusters running streaming queries are going to run 24/7, it is impor‐
tant to provision resources appropriately. Underprovisoning the resources can
cause the streaming queries to fall behind (with micro-batches taking longer and
longer), while overprovisioning (e.g., allocated but unused cores) can cause
unnecessary costs. Furthermore, allocation should be done based on the nature
of the streaming queries: stateless queries usually need more cores, and stateful
queries usually need more memory.

Number of partitions for shuffles
For Structured Streaming queries, the number of shuffle partitions usually needs
to be set much lower than for most batch queries—dividing the computation too
much increases overheads and reduces throughput. Furthermore, shuffles due to
stateful operations have significantly higher task overheads due to checkpointing.
Hence, for streaming queries with stateful operations and trigger intervals of a
few seconds to minutes, it is recommended to tune the number of shuffle

262 | Chapter 8: Structured Streaming

partitions from the default value of 200 to at most two to three times the number
of allocated cores.

Setting source rate limits for stability
After the allocated resources and configurations have been optimized for a
query’s expected input data rates, it’s possible that sudden surges in data rates can
generate unexpectedly large jobs and subsequent instability. Besides the costly
approach of overprovisioning, you can safeguard against instability using source
rate limits. Setting limits in supported sources (e.g., Kafka and files) prevents a
query from consuming too much data in a single micro-batch. The surge data
will stay buffered in the source, and the query will eventually catch up. However,
note the following:

• Setting the limit too low can cause the query to underutilize allocated resour‐
ces and fall behind the input rate.

• Limits do not effectively guard against sustained increases in input rate.
While stability is maintained, the volume of buffered, unprocessed data will
grow indefinitely at the source and so will the end-to-end latencies.

Multiple streaming queries in the same Spark application
Running multiple streaming queries in the same SparkContext or SparkSession
can lead to fine-grained resource sharing. However:

• Executing each query continuously uses resources in the Spark driver (i.e.,
the JVM where it is running). This limits the number of queries that the
driver can execute simultaneously. Hitting those limits can either bottleneck
the task scheduling (i.e., underutilizing the executors) or exceed memory
limits.

• You can ensure fairer resource allocation between queries in the same
context by setting them to run in separate scheduler pools. Set the
SparkContext’s thread-local property spark.scheduler.pool to a different
string value for each stream:
// In Scala
// Run streaming query1 in scheduler pool1
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "pool1")
df.writeStream.queryName("query1").format("parquet").start(path1)

// Run streaming query2 in scheduler pool2
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "pool2")
df.writeStream.queryName("query2").format("parquet").start(path2)

Performance Tuning | 263

In Python
Run streaming query1 in scheduler pool1
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "pool1")
df.writeStream.queryName("query1").format("parquet").start(path1)

Run streaming query2 in scheduler pool2
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "pool2")
df.writeStream.queryName("query2").format("parquet").start(path2)

Summary
This chapter explored writing Structured Streaming queries using the DataFrame
API. Specifically, we discussed:

• The central philosophy of Structured Streaming and the processing model of
treating input data streams as unbounded tables

• The key steps to define, start, restart, and monitor streaming queries
• How to use various built-in streaming sources and sinks and write custom

streaming sinks
• How to use and tune managed stateful operations like streaming aggregations

and stream–stream joins
• Techniques for expressing custom stateful computations

By working through the code snippets in the chapter and the notebooks in the book’s
GitHub repo, you will get a feel for how to use Structured Streaming effectively. In the
next chapter, we explore how you can manage structured data read and written
simultaneously from batch and streaming workloads.

264 | Chapter 8: Structured Streaming

https://github.com/databricks/LearningSparkV2

CHAPTER 9

Building Reliable Data Lakes
with Apache Spark

In the previous chapters, you learned how to easily and effectively use Apache Spark
to build scalable and performant data processing pipelines. However, in practice,
expressing the processing logic only solves half of the end-to-end problem of building
a pipeline. For a data engineer, data scientist, or data analyst, the ultimate goal of
building pipelines is to query the processed data and get insights from it. The choice
of storage solution determines the end-to-end (i.e., from raw data to insights) robust‐
ness and performance of the data pipeline.

In this chapter, we will first discuss the key features of a storage solution that you
need to look out for. Then we will discuss two broad classes of storage solutions, data‐
bases and data lakes, and how to use Apache Spark with them. Finally, we will intro‐
duce the next wave of storage solution, called lakehouses, and explore some of the
new open source processing engines in this space.

The Importance of an Optimal Storage Solution
Here are some of the properties that are desired in a storage solution:

Scalability and performance
The storage solution should be able to scale to the volume of data and provide
the read/write throughput and latency that the workload requires.

Transaction support
Complex workloads are often reading and writing data concurrently, so support
for ACID transactions is essential to ensure the quality of the end results.

265

https://oreil.ly/6Jn97

Support for diverse data formats
The storage solution should be able to store unstructured data (e.g., text files like
raw logs), semi-structured data (e.g., JSON data), and structured data (e.g., tabu‐
lar data).

Support for diverse workloads
The storage solution should be able to support a diverse range of business work‐
loads, including:

• SQL workloads like traditional BI analytics
• Batch workloads like traditional ETL jobs processing raw unstructured data
• Streaming workloads like real-time monitoring and alerting
• ML and AI workloads like recommendations and churn predictions

Openness
Supporting a wide range of workloads often requires the data to be stored in
open data formats. Standard APIs allow the data to be accessed from a variety of
tools and engines. This allows the business to use the most optimal tools for each
type of workload and make the best business decisions.

Over time, different kinds of storage solutions have been proposed, each with its
unique advantages and disadvantages with respect to these properties. In this chapter,
we will explore how the available storage solutions evolved from databases to data
lakes, and how to use Apache Spark with each of them. We’ll then turn our attention
to the next generation of storage solutions, often called data lakehouses, that can pro‐
vide the best of both worlds: the scalability and flexibility of data lakes with the trans‐
actional guarantees of databases.

Databases
For many decades, databases have been the most reliable solution for building data
warehouses to store business-critical data. In this section, we will explore the archi‐
tecture of databases and their workloads, and how to use Apache Spark for analytics
workloads on databases. We will end this section with a discussion of the limitations
of databases in supporting modern non-SQL workloads.

A Brief Introduction to Databases
Databases are designed to store structured data as tables, which can be read using
SQL queries. The data must adhere to a strict schema, which allows a database man‐
agement system to heavily co-optimize the data storage and processing. That is, they
tightly couple their internal layout of the data and indexes in on-disk files with their
highly optimized query processing engines, thus providing very fast computations on

266 | Chapter 9: Building Reliable Data Lakes with Apache Spark

the stored data along with strong transactional ACID guarantees on all read/write
operations.

SQL workloads on databases can be broadly classified into two categories, as follows:

Online transaction processing (OLTP) workloads
Like bank account transactions, OLTP workloads are typically high-concurrency,
low-latency, simple queries that read or update a few records at a time.

Online analytical processing (OLAP)
OLAP workloads, like periodic reporting, are typically complex queries (involv‐
ing aggregates and joins) that require high-throughput scans over many records.

It is important to note that Apache Spark is a query engine that is primarily designed
for OLAP workloads, not OLTP workloads. Hence, in the rest of the chapter we are
going to focus our discussion on storage solutions for analytical workloads. Next, let’s
see how Apache Spark can be used to read from and write to databases.

Reading from and Writing to Databases Using Apache Spark
Thanks to the ever-growing ecosystem of connectors, Apache Spark can connect to a
wide variety of databases for reading and writing data. For databases that have JDBC
drivers (e.g., PostgreSQL, MySQL), you can use the built-in JDBC data source along
with the appropriate JDBC driver jars to access the data. For many other modern
databases (e.g., Azure Cosmos DB, Snowflake), there are dedicated connectors that
you can invoke using the appropriate format name. Several examples were discussed
in detail in Chapter 5. This makes it very easy to augment your data warehouses and
databases with workloads and use cases based on Apache Spark.

Limitations of Databases
Since the last century, databases and SQL queries have been known as great building
solutions for BI workloads. However, the last decade has seen two major new trends
in analytical workloads:

Growth in data sizes
With the advent of big data, there has been a global trend in the industry to
measure and collect everything (page views, clicks, etc.) in order to understand
trends and user behaviors. As a result, the amount of data collected by any com‐
pany or organization has increased from gigabytes a couple of decades ago to ter‐
abytes and petabytes today.

Growth in the diversity of analytics
Along with the increase in data collection, there is a need for deeper insights.
This has led to an explosive growth of complex analytics like machine learning
and deep learning.

Databases | 267

https://oreil.ly/n94tD
https://oreil.ly/NJQ2m

Databases have been shown to be rather inadequate at accommodating these new
trends, because of the following limitations:

Databases are extremely expensive to scale out
Although databases are extremely efficient at processing data on a single
machine, the rate of growth of data volumes has far outpaced the growth in per‐
formance capabilities of a single machine. The only way forward for processing
engines is to scale out—that is, use multiple machines to process data in parallel.
However, most databases, especially the open source ones, are not designed for
scaling out to perform distributed processing. The few industrial database solu‐
tions that can remotely keep up with the processing requirements tend to be pro‐
prietary solutions running on specialized hardware, and are therefore very
expensive to acquire and maintain.

Databases do not support non–SQL based analytics very well
Databases store data in complex (often proprietary) formats that are typically
highly optimized for only that database’s SQL processing engine to read. This
means other processing tools, like machine learning and deep learning systems,
cannot efficiently access the data (except by inefficiently reading all the data from
the database). Nor can databases be easily extended to perform non–SQL based
analytics like machine learning.

These limitations of databases led to the development of a completely different
approach to storing data, known as data lakes.

Data Lakes
In contrast to most databases, a data lake is a distributed storage solution that runs on
commodity hardware and easily scales out horizontally. In this section, we will start
with a discussion of how data lakes satisfy the requirements of modern workloads,
then see how Apache Spark integrates with data lakes to make workloads scale to data
of any size. Finally, we will explore the impact of the architectural sacrifices made by
data lakes to achieve scalability.

A Brief Introduction to Data Lakes
The data lake architecture, unlike that of databases, decouples the distributed storage
system from the distributed compute system. This allows each system to scale out as
needed by the workload. Furthermore, the data is saved as files with open formats,
such that any processing engine can read and write them using standard APIs. This
idea was popularized in the late 2000s by the Hadoop File System (HDFS) from the
Apache Hadoop project, which itself was heavily inspired by the research paper “The
Google File System” by Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.

268 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://hadoop.apache.org/
https://oreil.ly/v6py_
https://oreil.ly/v6py_

Organizations build their data lakes by independently choosing the following:

Storage system
They choose to either run HDFS on a cluster of machines or use any cloud object
store (e.g., AWS S3, Azure Data Lake Storage, or Google Cloud Storage).

File format
Depending on the downstream workloads, the data is stored as files in either
structured (e.g., Parquet, ORC), semi-structured (e.g., JSON), or sometimes even
unstructured formats (e.g., text, images, audio, video).

Processing engine(s)
Again, depending on the kinds of analytical workloads to be performed, a pro‐
cessing engine is chosen. This can either be a batch processing engine (e.g.,
Spark, Presto, Apache Hive), a stream processing engine (e.g., Spark, Apache
Flink), or a machine learning library (e.g., Spark MLlib, scikit-learn, R).

This flexibility—the ability to choose the storage system, open data format, and pro‐
cessing engine that are best suited to the workload at hand—is the biggest advantage
of data lakes over databases. On the whole, for the same performance characteristics,
data lakes often provide a much cheaper solution than databases. This key advantage
has led to the explosive growth of the big data ecosystem. In the next section, we will
discuss how you can use Apache Spark to read and write common file formats on any
storage system.

Reading from and Writing to Data Lakes using Apache Spark
Apache Spark is one of the best processing engines to use when building your own
data lake, because it provides all the key features they require:

Support for diverse workloads
Spark provides all the necessary tools to handle a diverse range of workloads,
including batch processing, ETL operations, SQL workloads using Spark SQL,
stream processing using Structured Streaming (discussed in Chapter 8), and
machine learning using MLlib (discussed in Chapter 10), among many others.

Support for diverse file formats
In Chapter 4, we explored in detail how Spark has built-in support for unstruc‐
tured, semi-structured, and structured file formats.

Support for diverse filesystems
Spark supports accessing data from any storage system that supports Hadoop’s
FileSystem APIs. Since this API has become the de facto standard in the big data
ecosystem, most cloud and on-premises storage systems provide implementa‐
tions for it—which means Spark can read from and write to most storage
systems.

Data Lakes | 269

However, for many filesystems (especially those based on cloud storage, like AWS S3),
you have to configure Spark such that it can access the filesystem in a secure manner.
Furthermore, cloud storage systems often do not have the same file operation seman‐
tics expected from a standard filesystem (e.g., eventual consistency in S3), which can
lead to inconsistent results if you do not configure Spark accordingly. See the docu‐
mentation on cloud integration for details.

Limitations of Data Lakes
Data lakes are not without their share of flaws, the most egregious of which is the lack
of transactional guarantees. Specifically, data lakes fail to provide ACID guarantees
on:

Atomicity and isolation
Processing engines write data in data lakes as many files in a distributed manner.
If the operation fails, there is no mechanism to roll back the files already written,
thus leaving behind potentially corrupted data (the problem is exacerbated when
concurrent workloads modify the data because it is very difficult to provide isola‐
tion across files without higher-level mechanisms).

Consistency
Lack of atomicity on failed writes further causes readers to get an inconsistent
view of the data. In fact, it is hard to ensure data quality even in successfully writ‐
ten data. For example, a very common issue with data lakes is accidentally writ‐
ing out data files in a format and schema inconsistent with existing data.

To work around these limitations of data lakes, developers employ all sorts of tricks.
Here are a few examples:

• Large collections of data files in data lakes are often “partitioned” by subdirecto‐
ries based on a column’s value (e.g., a large Parquet-formatted Hive table parti‐
tioned by date). To achieve atomic modifications of existing data, often entire
subdirectories are rewritten (i.e., written to a temporary directory, then refer‐
ences swapped) just to update or delete a few records.

• The schedules of data update jobs (e.g., daily ETL jobs) and data querying jobs
(e.g., daily reporting jobs) are often staggered to avoid concurrent access to the
data and any inconsistencies caused by it.

Attempts to eliminate such practical issues have led to the development of new sys‐
tems, such as lakehouses.

270 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://oreil.ly/YncTL
https://oreil.ly/YncTL

Lakehouses: The Next Step in the Evolution of
Storage Solutions
The lakehouse is a new paradigm that combines the best elements of data lakes and
data warehouses for OLAP workloads. Lakehouses are enabled by a new system
design that provides data management features similar to databases directly on the
low-cost, scalable storage used for data lakes. More specifically, they provide the fol‐
lowing features:

Transaction support
Similar to databases, lakehouses provide ACID guarantees in the presence of
concurrent workloads.

Schema enforcement and governance
Lakehouses prevent data with an incorrect schema being inserted into a table,
and when needed, the table schema can be explicitly evolved to accommodate
ever-changing data. The system should be able to reason about data integrity, and
it should have robust governance and auditing mechanisms.

Support for diverse data types in open formats
Unlike databases, but similar to data lakes, lakehouses can store, refine, analyze,
and access all types of data needed for many new data applications, be it struc‐
tured, semi-structured, or unstructured. To enable a wide variety of tools to
access it directly and efficiently, the data must be stored in open formats with
standardized APIs to read and write them.

Support for diverse workloads
Powered by the variety of tools reading data using open APIs, lakehouses enable
diverse workloads to operate on data in a single repository. Breaking down iso‐
lated data silos (i.e., multiple repositories for different categories of data) enables
developers to more easily build diverse and complex data solutions, from tradi‐
tional SQL and streaming analytics to machine learning.

Support for upserts and deletes
Complex use cases like change-data-capture (CDC) and slowly changing dimen‐
sion (SCD) operations require data in tables to be continuously updated. Lake‐
houses allow data to be concurrently deleted and updated with transactional
guarantees.

Data governance
Lakehouses provide the tools with which you can reason about data integrity and
audit all the data changes for policy compliance.

Currently, there are a few open source systems, such as Apache Hudi, Apache Iceberg,
and Delta Lake, that can be used to build lakehouses with these properties. At a very

Lakehouses: The Next Step in the Evolution of Storage Solutions | 271

https://oreil.ly/eEj_m
https://oreil.ly/13zll
https://oreil.ly/13zll

high level, all three projects have a similar architecture inspired by well-known data‐
base principles. They are all open data storage formats that do the following:

• Store large volumes of data in structured file formats on scalable filesystems.
• Maintain a transaction log to record a timeline of atomic changes to the data

(much like databases).
• Use the log to define versions of the table data and provide snapshot isolation

guarantees between readers and writers.
• Support reading and writing to tables using Apache Spark.

Within these broad strokes, each project has unique characteristics in terms of APIs,
performance, and the level of integration with Apache Spark’s data source APIs. We
will explore them next. Note that all of these projects are evolving fast, and therefore
some of the descriptions may be outdated at the time you are reading them. Refer to
the online documentation for each project for the most up-to-date information.

Apache Hudi
Initially built by Uber Engineering, Apache Hudi—an acronym for Hadoop Update
Delete and Incremental—is a data storage format that is designed for incremental
upserts and deletes over key/value-style data. The data is stored as a combination of
columnar formats (e.g., Parquet files) and row-based formats (e.g., Avro files for
recording incremental changes over Parquet files). Besides the common features
mentioned earlier, it supports:

• Upserting with fast, pluggable indexing
• Atomic publishing of data with rollback support
• Reading incremental changes to a table
• Savepoints for data recovery
• File size and layout management using statistics
• Async compaction of row and columnar data

Apache Iceberg
Originally built at Netflix, Apache Iceberg is another open storage format for huge
data sets. However, unlike Hudi, which focuses on upserting key/value data, Iceberg
focuses more on general-purpose data storage that scales to petabytes in a single table
and has schema evolution properties. Specifically, it provides the following additional
features (besides the common ones):

272 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://eng.uber.com/hoodie
https://hudi.apache.org
https://github.com/Netflix/iceberg
https://iceberg.apache.org

• Schema evolution by adding, dropping, updating, renaming, and reordering of
columns, fields, and/or nested structures

• Hidden partitioning, which under the covers creates the partition values for rows
in a table

• Partition evolution, where it automatically performs a metadata operation to
update the table layout as data volume or query patterns change

• Time travel, which allows you to query a specific table snapshot by ID or by
timestamp

• Rollback to previous versions to correct errors
• Serializable isolation, even between multiple concurrent writers

Delta Lake
Delta Lake is an open source project hosted by the Linux Foundation, built by the
original creators of Apache Spark. Similar to the others, it is an open data storage for‐
mat that provides transactional guarantees and enables schema enforcement and evo‐
lution. It also provides several other interesting features, some of which are unique.
Delta Lake supports:

• Streaming reading from and writing to tables using Structured Streaming sources
and sinks

• Update, delete, and merge (for upserts) operations, even in Java, Scala, and
Python APIs

• Schema evolution either by explicitly altering the table schema or by implicitly
merging a DataFrame’s schema to the table’s during the DataFrame’s write. (In
fact, the merge operation in Delta Lake supports advanced syntax for conditional
updates/inserts/deletes, updating all columns together, etc., as you’ll see later in
the chapter.)

• Time travel, which allows you to query a specific table snapshot by ID or by
timestamp

• Rollback to previous versions to correct errors
• Serializable isolation between multiple concurrent writers performing any SQL,

batch, or streaming operations

In the rest of this chapter, we are going to explore how such a system, along with
Apache Spark, can be used to build a lakehouse that provides the aforementioned
properties. Of these three systems, so far Delta Lake has the tightest integration with
Apache Spark data sources (both for batch and streaming workloads) and SQL
operations (e.g., MERGE). Hence, we will use Delta Lake as the vehicle for further
exploration.

Lakehouses: The Next Step in the Evolution of Storage Solutions | 273

https://delta.io/

1 A full view of the data is available at this Excel file.

This project is called Delta Lake because of its analogy to stream‐
ing. Streams flow into the sea to create deltas—this is where all of
the sediments accumulate, and thus where the valuable crops are
grown. Jules S. Damji (one of our coauthors) came up with this!

Building Lakehouses with Apache Spark and Delta Lake
In this section, we are going to take a quick look at how Delta Lake and Apache Spark
can be used to build lakehouses. Specifically, we will explore the following:

• Reading and writing Delta Lake tables using Apache Spark
• How Delta Lake allows concurrent batch and streaming writes with ACID

guarantees
• How Delta Lake ensures better data quality by enforcing schema on all writes,

while allowing for explicit schema evolution
• Building complex data pipelines using update, delete, and merge operations, all

of which ensure ACID guarantees
• Auditing the history of operations that modified a Delta Lake table and traveling

back in time by querying earlier versions of the table

The data we will use in this section is a modified version (a subset of columns in Par‐
quet format) of the public Lending Club Loan Data.1 It includes all funded loans from
2012 to 2017. Each loan record includes applicant information provided by the appli‐
cant as well as the current loan status (current, late, fully paid, etc.) and latest pay‐
ment information.

Configuring Apache Spark with Delta Lake
You can configure Apache Spark to link to the Delta Lake library in one of the follow‐
ing ways:

Set up an interactive shell
If you’re using Apache Spark 3.0, you can start a PySpark or Scala shell with Delta
Lake by using the following command-line argument:

--packages io.delta:delta-core_2.12:0.7.0

For example:

pyspark --packages io.delta:delta-core_2.12:0.7.0

If you are running Spark 2.4, you have to use Delta Lake 0.6.0.

274 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://oreil.ly/Rgtn1
https://oreil.ly/P7AR-

Set up a standalone Scala/Java project using Maven coordinates
If you want to build a project using Delta Lake binaries from the Maven Central
repository, you can add the following Maven coordinates to the project
dependencies:

 <dependency>
 <groupId>io.delta</groupId>
 <artifactId>delta-core_2.12</artifactId>
 <version>0.7.0</version>
</dependency>

Again, if you are running Spark 2.4 you have to use Delta Lake 0.6.0.

See the Delta Lake documentation for the most up-to-date infor‐
mation.

Loading Data into a Delta Lake Table
If you are used to building data lakes with Apache Spark and any of the structured
data formats—say, Parquet—then it is very easy to migrate existing workloads to use
the Delta Lake format. All you have to do is change all the DataFrame read and write
operations to use format("delta") instead of format("parquet"). Let’s try this out
with some of the aforementioned loan data, which is available as a Parquet file. First
let’s read this data and save it as a Delta Lake table:

// In Scala
// Configure source data path
val sourcePath = "/databricks-datasets/learning-spark-v2/loans/
 loan-risks.snappy.parquet"

// Configure Delta Lake path
val deltaPath = "/tmp/loans_delta"

// Create the Delta table with the same loans data
spark
 .read
 .format("parquet")
 .load(sourcePath)
 .write
 .format("delta")
 .save(deltaPath)

// Create a view on the data called loans_delta
spark
 .read
 .format("delta")

Building Lakehouses with Apache Spark and Delta Lake | 275

https://oreil.ly/MmlC3
https://oreil.ly/7pP1y

 .load(deltaPath)
 .createOrReplaceTempView("loans_delta")

In Python
Configure source data path
sourcePath = "/databricks-datasets/learning-spark-v2/loans/
 loan-risks.snappy.parquet"

Configure Delta Lake path
deltaPath = "/tmp/loans_delta"

Create the Delta Lake table with the same loans data
(spark.read.format("parquet").load(sourcePath)
 .write.format("delta").save(deltaPath))

Create a view on the data called loans_delta
spark.read.format("delta").load(deltaPath).createOrReplaceTempView("loans_delta")

Now we can read and explore the data as easily as any other table:

// In Scala/Python

// Loans row count
spark.sql("SELECT count(*) FROM loans_delta").show()

+--------+
|count(1)|
+--------+
| 14705|
+--------+

// First 5 rows of loans table
spark.sql("SELECT * FROM loans_delta LIMIT 5").show()

+-------+-----------+---------+----------+
|loan_id|funded_amnt|paid_amnt|addr_state|
+-------+-----------+---------+----------+
0	1000	182.22	CA
1	1000	361.19	WA
2	1000	176.26	TX
3	1000	1000.0	OK
4	1000	249.98	PA
+-------+-----------+---------+----------+

276 | Chapter 9: Building Reliable Data Lakes with Apache Spark

Loading Data Streams into a Delta Lake Table
As with static DataFrames, you can easily modify your existing Structured Streaming
jobs to write to and read from a Delta Lake table by setting the format to "delta". Say
you have a stream of new loan data as a DataFrame named newLoanStreamDF, which
has the same schema as the table. You can append to the table as follows:

// In Scala
import org.apache.spark.sql.streaming._

val newLoanStreamDF = ... // Streaming DataFrame with new loans data
val checkpointDir = ... // Directory for streaming checkpoints
val streamingQuery = newLoanStreamDF.writeStream
 .format("delta")
 .option("checkpointLocation", checkpointDir)
 .trigger(Trigger.ProcessingTime("10 seconds"))
 .start(deltaPath)

In Python
newLoanStreamDF = ... # Streaming DataFrame with new loans data
checkpointDir = ... # Directory for streaming checkpoints
streamingQuery = (newLoanStreamDF.writeStream
 .format("delta")
 .option("checkpointLocation", checkpointDir)
 .trigger(processingTime = "10 seconds")
 .start(deltaPath))

With this format, just like any other, Structured Streaming offers end-to-end exactly-
once guarantees. However, Delta Lake has a few additional advantages over tradi‐
tional formats like JSON, Parquet, or ORC:

It allows writes from both batch and streaming jobs into the same table
With other formats, data written into a table from a Structured Streaming job
will overwrite any existing data in the table. This is because the metadata main‐
tained in the table to ensure exactly-once guarantees for streaming writes does
not account for other nonstreaming writes. Delta Lake’s advanced metadata man‐
agement allows both batch and streaming data to be written.

It allows multiple streaming jobs to append data to the same table
The same limitation of metadata with other formats also prevents multiple Struc‐
tured Streaming queries from appending to the same table. Delta Lake’s metadata
maintains transaction information for each streaming query, thus enabling any
number of streaming queries to concurrently write into a table with exactly-once
guarantees.

It provides ACID guarantees even under concurrent writes
Unlike built-in formats, Delta Lake allows concurrent batch and streaming oper‐
ations to write data with ACID guarantees.

Building Lakehouses with Apache Spark and Delta Lake | 277

Enforcing Schema on Write to Prevent Data Corruption
A common problem with managing data with Spark using common formats like
JSON, Parquet, and ORC is accidental data corruption caused by writing incorrectly
formatted data. Since these formats define the data layout of individual files and not
of the entire table, there is no mechanism to prevent any Spark job from writing files
with different schemas into existing tables. This means there are no guarantees of
consistency for the entire table of many Parquet files.

The Delta Lake format records the schema as table-level metadata. Hence, all writes
to a Delta Lake table can verify whether the data being written has a schema compati‐
ble with that of the table. If it is not compatible, Spark will throw an error before any
data is written and committed to the table, thus preventing such accidental data cor‐
ruption. Let’s test this by trying to write some data with an additional column,
closed, that signifies whether the loan has been terminated. Note that this column
does not exist in the table:

// In Scala
val loanUpdates = Seq(
 (1111111L, 1000, 1000.0, "TX", false),
 (2222222L, 2000, 0.0, "CA", true))
 .toDF("loan_id", "funded_amnt", "paid_amnt", "addr_state", "closed")

loanUpdates.write.format("delta").mode("append").save(deltaPath)

In Python
from pyspark.sql.functions import *

cols = ['loan_id', 'funded_amnt', 'paid_amnt', 'addr_state', 'closed']
items = [
(1111111, 1000, 1000.0, 'TX', True),
(2222222, 2000, 0.0, 'CA', False)
]

loanUpdates = (spark.createDataFrame(items, cols)
 .withColumn("funded_amnt", col("funded_amnt").cast("int")))
loanUpdates.write.format("delta").mode("append").save(deltaPath)

This write will fail with the following error message:

org.apache.spark.sql.AnalysisException: A schema mismatch detected when writing
 to the Delta table (Table ID: 48bfa949-5a09-49ce-96cb-34090ab7d695).
To enable schema migration, please set:
'.option("mergeSchema", "true")'.

Table schema:
root
-- loan_id: long (nullable = true)
-- funded_amnt: integer (nullable = true)
-- paid_amnt: double (nullable = true)
-- addr_state: string (nullable = true)

278 | Chapter 9: Building Reliable Data Lakes with Apache Spark

Data schema:
root
-- loan_id: long (nullable = true)
-- funded_amnt: integer (nullable = true)
-- paid_amnt: double (nullable = true)
-- addr_state: string (nullable = true)
-- closed: boolean (nullable = true)

This illustrates how Delta Lake blocks writes that do not match the schema of the
table. However, it also gives a hint about how to actually evolve the schema of the
table using the option mergeSchema, as discussed next.

Evolving Schemas to Accommodate Changing Data
In our world of ever-changing data, it is possible that we might want to add this new
column to the table. This new column can be explicitly added by setting the option
"mergeSchema" to "true":

// In Scala
loanUpdates.write.format("delta").mode("append")
 .option("mergeSchema", "true")
 .save(deltaPath)

In Python
(loanUpdates.write.format("delta").mode("append")
 .option("mergeSchema", "true")
 .save(deltaPath))

With this, the column closed will be added to the table schema, and new data will be
appended. When existing rows are read, the value of the new column is considered as
NULL. In Spark 3.0, you can also use the SQL DDL command ALTER TABLE to add and
modify columns.

Transforming Existing Data
Delta Lake supports the DML commands UPDATE, DELETE, and MERGE, which allow
you to build complex data pipelines. These commands can be invoked using Java,
Scala, Python, and SQL, giving users the flexibility of using the commands with any
APIs they are familiar with, using either DataFrames or tables. Furthermore, each of
these data modification operations ensures ACID guarantees.

Let’s explore this with a few examples of real-world use cases.

Building Lakehouses with Apache Spark and Delta Lake | 279

Updating data to fix errors
A common use case when managing data is fixing errors in the data. Suppose, upon
reviewing the data, we realized that all of the loans assigned to addr_state = 'OR'
should have been assigned to addr_state = 'WA'. If the loan table were a Parquet
table, then to do such an update we would need to:

1. Copy all of the rows that are not affected into a new table.
2. Copy all of the rows that are affected into a DataFrame, then perform the data

modification.
3. Insert the previously noted DataFrame’s rows into the new table.
4. Remove the old table and rename the new table to the old table name.

In Spark 3.0, which added direct support for DML SQL operations like UPDATE,
DELETE, and MERGE, instead of manually performing all these steps you can simply run
the SQL UPDATE command. However, with a Delta Lake table, users can run this oper‐
ation too, by using Delta Lake’s programmatic APIs as follows:

// In Scala
import io.delta.tables.DeltaTable
import org.apache.spark.sql.functions._

val deltaTable = DeltaTable.forPath(spark, deltaPath)
deltaTable.update(
 col("addr_state") === "OR",
 Map("addr_state" -> lit("WA")))

In Python
from delta.tables import *

deltaTable = DeltaTable.forPath(spark, deltaPath)
deltaTable.update("addr_state = 'OR'", {"addr_state": "'WA'"})

Deleting user-related data
With data protection policies like the EU’s General Data Protection Regulation
(GDPR) coming into force, it is more important now than ever to be able to delete
user data from all your tables. Say it is mandated that you have to delete the data on
all loans that have been fully paid off. With Delta Lake, you can do the following:

// In Scala
val deltaTable = DeltaTable.forPath(spark, deltaPath)
deltaTable.delete("funded_amnt >= paid_amnt")

In Python
deltaTable = DeltaTable.forPath(spark, deltaPath)
deltaTable.delete("funded_amnt >= paid_amnt")

280 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://oreil.ly/hOdBE
https://oreil.ly/hOdBE

Similar to updates, with Delta Lake and Apache Spark 3.0 you can directly run the
DELETE SQL command on the table.

Upserting change data to a table using merge()
A common use case is change data capture, where you have to replicate row changes
made in an OLTP table to another table for OLAP workloads. To continue with our
loan data example, say we have another table of new loan information, some of which
are new loans and others of which are updates to existing loans. In addition, let’s say
this changes table has the same schema as the loan_delta table. You can upsert these
changes into the table using the DeltaTable.merge() operation, which is based on
the MERGE SQL command:

// In Scala
deltaTable
 .alias("t")
 .merge(loanUpdates.alias("s"), "t.loan_id = s.loan_id")
 .whenMatched.updateAll()
 .whenNotMatched.insertAll()
 .execute()

In Python
(deltaTable
 .alias("t")
 .merge(loanUpdates.alias("s"), "t.loan_id = s.loan_id")
 .whenMatchedUpdateAll()
 .whenNotMatchedInsertAll()
 .execute())

As a reminder, you can run this as a SQL MERGE command starting with Spark 3.0.
Furthermore, if you have a stream of such captured changes, you can continuously
apply those changes using a Structured Streaming query. The query can read the
changes in micro-batches (see Chapter 8) from any streaming source, and use fore
achBatch() to apply the changes in each micro-batch to the Delta Lake table.

Deduplicating data while inserting using insert-only merge
The merge operation in Delta Lake supports an extended syntax beyond that speci‐
fied by the ANSI standard, including advanced features like the following:

Delete actions
For example, MERGE ... WHEN MATCHED THEN DELETE.

Clause conditions
For example, MERGE ... WHEN MATCHED AND <condition> THEN

Optional actions
All the MATCHED and NOT MATCHED clauses are optional.

Building Lakehouses with Apache Spark and Delta Lake | 281

Star syntax
For example, UPDATE * and INSERT * to update/insert all the columns in the tar‐
get table with matching columns from the source data set. The equivalent Delta
Lake APIs are updateAll() and insertAll(), which we saw in the previous
section.

This allows you to express many more complex use cases with little code. For exam‐
ple, say you want to backfill the loan_delta table with historical data on past loans.
But some of the historical data may already have been inserted in the table, and you
don’t want to update those records because they may contain more up-to-date infor‐
mation. You can deduplicate by the loan_id while inserting by running the following
merge operation with only the INSERT action (since the UPDATE action is optional):

// In Scala
deltaTable
 .alias("t")
 .merge(historicalUpdates.alias("s"), "t.loan_id = s.loan_id")
 .whenNotMatched.insertAll()
 .execute()

In Python
(deltaTable
 .alias("t")
 .merge(historicalUpdates.alias("s"), "t.loan_id = s.loan_id")
 .whenNotMatchedInsertAll()
 .execute())

There are even more complex use cases, like CDC with deletes and SCD tables, that
are made simple with the extended merge syntax. Refer to the documentation for
more details and examples.

Auditing Data Changes with Operation History
All of the changes to your Delta Lake table are recorded as commits in the table’s
transaction log. As you write into a Delta Lake table or directory, every operation is
automatically versioned. You can query the table’s operation history as noted in the
following code snippet:

// In Scala/Python
deltaTable.history().show()

By default this will show a huge table with many versions and a lot of columns. Let’s
instead print some of the key columns of the last three operations:

// In Scala
deltaTable
 .history(3)
 .select("version", "timestamp", "operation", "operationParameters")
 .show(false)

282 | Chapter 9: Building Reliable Data Lakes with Apache Spark

https://oreil.ly/XBag7

In Python
(deltaTable
 .history(3)
 .select("version", "timestamp", "operation", "operationParameters")
 .show(truncate=False))

This will generate the following output:

+-------+-----------+---------+---+
|version|timestamp |operation|operationParameters |
+-------+-----------+---------+---+
5	2020-04-07	MERGE	[predicate -> (t.`loan_id` = s.`loan_id`)]
4	2020-04-07	MERGE	[predicate -> (t.`loan_id` = s.`loan_id`)]
3	2020-04-07	DELETE	[predicate -> ["(CAST(`funded_amnt` ...
+-------+-----------+---------+---+

Note the operation and operationParameters that are useful for auditing the
changes.

Querying Previous Snapshots of a Table with Time Travel
You can query previous versioned snapshots of a table by using the DataFrameReader
options "versionAsOf" and "timestampAsOf". Here are a few examples:

// In Scala
spark.read
 .format("delta")
 .option("timestampAsOf", "2020-01-01") // timestamp after table creation
 .load(deltaPath)

spark.read.format("delta")
 .option("versionAsOf", "4")
 .load(deltaPath)

In Python
(spark.read
 .format("delta")
 .option("timestampAsOf", "2020-01-01") # timestamp after table creation
 .load(deltaPath))

(spark.read.format("delta")
 .option("versionAsOf", "4")
 .load(deltaPath))

This is useful in a variety of situations, such as:

• Reproducing machine learning experiments and reports by rerunning the job on
a specific table version

• Comparing the data changes between different versions for auditing
• Rolling back incorrect changes by reading a previous snapshot as a DataFrame

and overwriting the table with it

Building Lakehouses with Apache Spark and Delta Lake | 283

Summary
This chapter examined the possibilities for building reliable data lakes using Apache
Spark. To recap, databases have solved data problems for a long time, but they fail to
fulfill the diverse requirements of modern use cases and workloads. Data lakes were
built to alleviate some of the limitations of databases, and Apache Spark is one of the
best tools to build them with. However, data lakes still lack some of the key features
provided by databases (e.g., ACID guarantees). Lakehouses are the next generation of
data solutions, which aim to provide the best features of databases and data lakes and
meet all the requirements of diverse use cases and workloads.

We briefly explored a couple of open source systems (Apache Hudi and Apache Ice‐
berg) that can be used to build lakehouses, then took a closer look at Delta Lake, a
file-based open source storage format that, along with Apache Spark, is a great build‐
ing block for lakehouses. As you saw, it provides the following:

• Transactional guarantees and schema management, like databases
• Scalability and openness, like data lakes
• Support for concurrent batch and streaming workloads with ACID guarantees
• Support for transformation of existing data using update, delete, and merge oper‐

ations that ensure ACID guarantees
• Support for versioning, auditing of operation history, and querying of previous

versions

In the next chapter, we’ll explore how to begin building ML models using Spark’s
MLlib.

284 | Chapter 9: Building Reliable Data Lakes with Apache Spark

CHAPTER 10

Machine Learning with MLlib

Up until this point, we have focused on data engineering workloads with Apache
Spark. Data engineering is often a precursory step to preparing your data for machine
learning (ML) tasks, which will be the focus of this chapter. We live in an era in which
machine learning and artificial intelligence applications are an integral part of our
lives. Chances are that whether we realize it or not, every day we come into contact
with ML models for purposes such as online shopping recommendations and adver‐
tisements, fraud detection, classification, image recognition, pattern matching, and
more. These ML models drive important business decisions for many companies.
According to this McKinsey study, 35% of what consumers purchase on Amazon and
75% of what they watch on Netflix is driven by machine learning–based product rec‐
ommendations. Building a model that performs well can make or break companies.

In this chapter we will get you started building ML models using MLlib, the de facto
machine learning library in Apache Spark. We’ll begin with a brief introduction to
machine learning, then cover best practices for distributed ML and feature engineer‐
ing at scale (if you’re already familiar with machine learning fundamentals, you can
skip straight to “Designing Machine Learning Pipelines” on page 289). Through the
short code snippets presented here and the notebooks available in the book’s GitHub
repo, you’ll learn how to build basic ML models and use MLlib.

This chapter covers the Scala and Python APIs; if you’re interested
in using R (sparklyr) with Spark for machine learning, we invite
you to check out Mastering Spark with R by Javier Luraschi, Kevin
Kuo, and Edgar Ruiz (O’Reilly).

285

https://oreil.ly/Dxj0A
https://oreil.ly/_XSOs
https://github.com/databricks/LearningSparkV2
https://github.com/databricks/LearningSparkV2
http://shop.oreilly.com/product/0636920223764.do

What Is Machine Learning?
Machine learning is getting a lot of hype these days—but what is it, exactly? Broadly
speaking, machine learning is a process for extracting patterns from your data, using
statistics, linear algebra, and numerical optimization. Machine learning can be
applied to problems such as predicting power consumption, determining whether or
not there is a cat in your video, or clustering items with similar characteristics.

There are a few types of machine learning, including supervised, semi-supervised,
unsupervised, and reinforcement learning. This chapter will mainly focus on super‐
vised machine learning and just touch upon unsupervised learning. Before we dive
in, let’s briefly discuss the differences between supervised and unsupervised ML.

Supervised Learning
In supervised machine learning, your data consists of a set of input records, each of
which has associated labels, and the goal is to predict the output label(s) given a new
unlabeled input. These output labels can either be discrete or continuous, which
brings us to the two types of supervised machine learning: classification and regres‐
sion.

In a classification problem, the aim is to separate the inputs into a discrete set of
classes or labels. With binary classification, there are two discrete labels you want to
predict, such as “dog” or “not dog,” as Figure 10-1 depicts.

Figure 10-1. Binary classification example: dog or not dog

With multiclass, also known as multinomial, classification, there can be three or more
discrete labels, such as predicting the breed of a dog (e.g., Australian shepherd,
golden retriever, or poodle, as shown in Figure 10-2).

286 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/fVOVL

Figure 10-2. Multinomial classification example: Australian shepherd, golden retriever,
or poodle

In regression problems, the value to predict is a continuous number, not a label. This
means you might predict values that your model hasn’t seen during training, as
shown in Figure 10-3. For example, you might build a model to predict the daily ice
cream sales given the temperature. Your model might predict the value $77.67, even if
none of the input/output pairs it was trained on contained that value.

Figure 10-3. Regression example: predicting ice cream sales based on temperature

Table 10-1 lists some commonly used supervised ML algorithms that are available in
Spark MLlib, with a note as to whether they can be used for regression, classification,
or both.

What Is Machine Learning? | 287

https://oreil.ly/Yt0uu

Table 10-1. Popular classification and regression algorithms

Algorithm Typical usage
Linear regression Regression
Logistic regression Classification (we know, it has regression in the name!)
Decision trees Both
Gradient boosted trees Both
Random forests Both
Naive Bayes Classification
Support vector machines (SVMs) Classification

Unsupervised Learning
Obtaining the labeled data required by supervised machine learning can be very
expensive and/or infeasible. This is where unsupervised machine learning comes into
play. Instead of predicting a label, unsupervised ML helps you to better understand
the structure of your data.

As an example, consider the original unclustered data on the left in Figure 10-4.
There is no known true label for each of these data points (x1, x2), but by applying
unsupervised machine learning to our data we can find the clusters that naturally
form, as shown on the right.

Figure 10-4. Clustering example

Unsupervised machine learning can be used for outlier detection or as a preprocess‐
ing step for supervised machine learning—for example, to reduce the dimensionality

288 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/J80ym
https://oreil.ly/N5JWF

(i.e., number of dimensions per datum) of the data set, which is useful for reducing
storage requirements or simplifying downstream tasks. Some unsupervised machine
learning algorithms in MLlib include k-means, Latent Dirichlet Allocation (LDA),
and Gaussian mixture models.

Why Spark for Machine Learning?
Spark is a unified analytics engine that provides an ecosystem for data ingestion, fea‐
ture engineering, model training, and deployment. Without Spark, developers would
need many disparate tools to accomplish this set of tasks, and might still struggle with
scalability.

Spark has two machine learning packages: spark.mllib and spark.ml. spark.mllib
is the original machine learning API, based on the RDD API (which has been in
maintenance mode since Spark 2.0), while spark.ml is the newer API, based on Data‐
Frames. The rest of this chapter will focus on using the spark.ml package and how to
design machine learning pipelines in Spark. However, we use “MLlib” as an umbrella
term to refer to both machine learning library packages in Apache Spark.

With spark.ml, data scientists can use one ecosystem for their data preparation and
model building, without the need to downsample their data to fit on a single
machine. spark.ml focuses on O(n) scale-out, where the model scales linearly with
the number of data points you have, so it can scale to massive amounts of data. In the
following chapter, we will discuss some of the trade-offs involved in choosing
between a distributed framework such as spark.ml and a single-node framework like
scikit-learn (sklearn). If you have previously used scikit-learn, many of the
APIs in spark.ml will feel quite familiar, but there are some subtle differences that we
will discuss.

Designing Machine Learning Pipelines
In this section, we will cover how to create and tune ML pipelines. The concept of
pipelines is common across many ML frameworks as a way to organize a series of
operations to apply to your data. In MLlib, the Pipeline API provides a high-level API
built on top of DataFrames to organize your machine learning workflow. The Pipe‐
line API is composed of a series of transformers and estimators, which we will discuss
in-depth later.

Throughout this chapter, we will use the San Francisco housing data set from Inside
Airbnb. It contains information about Airbnb rentals in San Francisco, such as the
number of bedrooms, location, review scores, etc., and our goal is to build a model to
predict the nightly rental prices for listings in that city. This is a regression problem,
because price is a continuous variable. We will guide you through the workflow a data
scientist would go through to approach this problem, including feature engineering,

Designing Machine Learning Pipelines | 289

https://oreil.ly/NLYo6
https://oreil.ly/NLYo6
https://oreil.ly/qy-PT
https://oreil.ly/WBGzN
https://oreil.ly/WSz_8
https://oreil.ly/FdTA_
https://oreil.ly/hBfNj
https://oreil.ly/hBfNj

building models, hyperparameter tuning, and evaluating model performance. This
data set is quite messy and can be difficult to model (like most real-world data sets!),
so if you are experimenting on your own, don’t feel bad if your early models aren’t
great.

The intent of this chapter is not to show you every API in MLlib, but rather to equip
you with the skills and knowledge to get started with using MLlib to build end-to-end
pipelines. Before going into the details, let’s define some MLlib terminology:

Transformer
Accepts a DataFrame as input, and returns a new DataFrame with one or more
columns appended to it. Transformers do not learn any parameters from your
data and simply apply rule-based transformations to either prepare data for
model training or generate predictions using a trained MLlib model. They have
a .transform() method.

Estimator
Learns (or “fits”) parameters from your DataFrame via a .fit() method and
returns a Model, which is a transformer.

Pipeline
Organizes a series of transformers and estimators into a single model. While
pipelines themselves are estimators, the output of pipeline.fit() returns a Pipe
lineModel, a transformer.

While these concepts may seem rather abstract right now, the code snippets and
examples in this chapter will help you understand how they all come together. But
before we can build our ML models and use transformers, estimators, and pipelines,
we need to load in our data and perform some data preparation.

Data Ingestion and Exploration
We have slightly preprocessed the data in our example data set to remove outliers
(e.g., Airbnbs posted for $0/night), converted all integers to doubles, and selected an
informative subset of the more than one hundred fields. Further, for any missing
numerical values in our data columns, we have imputed the median value and added
an indicator column (the column name followed by _na, such as bedrooms_na). This
way the ML model or human analyst can interpret any value in that column as an
imputed value, not a true value. You can see the data preparation notebook in the
book’s GitHub repo. Note there are many other ways to handle missing values, which
are outside the scope of this book.

Let’s take a quick peek at the data set and the corresponding schema (with the output
showing just a subset of the columns):

290 | Chapter 10: Machine Learning with MLlib

https://github.com/databricks/LearningSparkV2

In Python
filePath = """/databricks-datasets/learning-spark-v2/sf-airbnb/
sf-airbnb-clean.parquet/"""
airbnbDF = spark.read.parquet(filePath)
airbnbDF.select("neighbourhood_cleansed", "room_type", "bedrooms", "bathrooms",
 "number_of_reviews", "price").show(5)

// In Scala
val filePath =
 "/databricks-datasets/learning-spark-v2/sf-airbnb/sf-airbnb-clean.parquet/"
val airbnbDF = spark.read.parquet(filePath)
airbnbDF.select("neighbourhood_cleansed", "room_type", "bedrooms", "bathrooms",
 "number_of_reviews", "price").show(5)

+----------------------+---------------+--------+---------+----------+-----+
|neighbourhood_cleansed| room_type|bedrooms|bathrooms|number_...|price|
+----------------------+---------------+--------+---------+----------+-----+
Western Addition	Entire home/apt	1.0	1.0	180.0	170.0
Bernal Heights	Entire home/apt	2.0	1.0	111.0	235.0
Haight Ashbury	Private room	1.0	4.0	17.0	65.0
Haight Ashbury	Private room	1.0	4.0	8.0	65.0
Western Addition	Entire home/apt	2.0	1.5	27.0	785.0
+----------------------+---------------+--------+---------+----------+-----+

Our goal is to predict the price per night for a rental property, given our features.

Before data scientists can get to model building, they need to
explore and understand their data. They will often use Spark to
group their data, then use data visualization libraries such as mat‐
plotlib to visualize the data. We will leave data exploration as an
exercise for the reader.

Creating Training and Test Data Sets
Before we begin feature engineering and modeling, we will divide our data set into
two groups: train and test. Depending on the size of your data set, your train/test ratio
may vary, but many data scientists use 80/20 as a standard train/test split. You might
be wondering, “Why not use the entire data set to train the model?” The problem is
that if we built a model on the entire data set, it’s possible that the model would mem‐
orize or “overfit” to the training data we provided, and we would have no more data
with which to evaluate how well it generalizes to previously unseen data. The model’s
performance on the test set is a proxy for how well it will perform on unseen data
(i.e., in the wild or in production), assuming that data follows similar distributions.
This split is depicted in Figure 10-5.

Designing Machine Learning Pipelines | 291

https://matplotlib.org
https://matplotlib.org

Figure 10-5. Train/test split

Our training set consists of a set of features, X, and a label, y. Here we use capital X to
denote a matrix with dimensions n x d, where n is the number of data points (or
examples) and d is the number of features (this is what we call the fields or columns
in our DataFrame). We use lowercase y to denote a vector, with dimensions n x 1; for
every example, there is one label.

Different metrics are used to measure the performance of the model. For classifica‐
tion problems, a standard metric is the accuracy, or percentage, of correct predic‐
tions. Once the model has satisfactory performance on the training set using that
metric, we will apply the model to our test set. If it performs well on our test set
according to our evaluation metrics, then we can feel confident that we have built a
model that will “generalize” to unseen data.

For our Airbnb data set, we will keep 80% for the training set and set aside 20% of our
data for the test set. Further, we will set a random seed for reproducibility, such that if
we rerun this code we will get the same data points going to our train and test data
sets, respectively. The value of the seed itself shouldn’t matter, but data scientists often
like setting it to 42 as that is the answer to the Ultimate Question of Life:

In Python
trainDF, testDF = airbnbDF.randomSplit([.8, .2], seed=42)
print(f"""There are {trainDF.count()} rows in the training set,
and {testDF.count()} in the test set""")

// In Scala
val Array(trainDF, testDF) = airbnbDF.randomSplit(Array(.8, .2), seed=42)
println(f"""There are ${trainDF.count} rows in the training set, and
${testDF.count} in the test set""")

This produces the following output:

There are 5780 rows in the training set, and 1366 in the test set

292 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/sE12h

But what happens if we change the number of executors in our Spark cluster? The
Catalyst optimizer determines the optimal way to partition your data as a function of
your cluster resources and size of your data set. Given that data in a Spark DataFrame
is row-partitioned and each worker performs its split independently of the other
workers, if the data in the partitions changes, then the result of the split (by random
Split()) won’t be the same.

While you could fix your cluster configuration and your seed to ensure that you get
consistent results, our recommendation is to split your data once, then write it out to
its own train/test folder so you don’t have these reproducibility issues.

During your exploratory analysis, you should cache the training
data set because you will be accessing it many times throughout the
machine learning process. Please reference the section on “Caching
and Persistence of Data” on page 183 in Chapter 7.

Preparing Features with Transformers
Now that we have split our data into training and test sets, let’s prepare the data to
build a linear regression model predicting price given the number of bedrooms. In a
later example, we will include all of the relevant features, but for now let’s make sure
we have the mechanics in place. Linear regression (like many other algorithms in
Spark) requires that all the input features are contained within a single vector in your
DataFrame. Thus, we need to transform our data.

Transformers in Spark accept a DataFrame as input and return a new DataFrame
with one or more columns appended to it. They do not learn from your data, but
apply rule-based transformations using the transform() method.

For the task of putting all of our features into a single vector, we will use the VectorAs
sembler transformer. VectorAssembler takes a list of input columns and creates a
new DataFrame with an additional column, which we will call features. It combines
the values of those input columns into a single vector:

In Python
from pyspark.ml.feature import VectorAssembler
vecAssembler = VectorAssembler(inputCols=["bedrooms"], outputCol="features")
vecTrainDF = vecAssembler.transform(trainDF)
vecTrainDF.select("bedrooms", "features", "price").show(10)

// In Scala
import org.apache.spark.ml.feature.VectorAssembler
val vecAssembler = new VectorAssembler()
 .setInputCols(Array("bedrooms"))
 .setOutputCol("features")
val vecTrainDF = vecAssembler.transform(trainDF)
vecTrainDF.select("bedrooms", "features", "price").show(10)

Designing Machine Learning Pipelines | 293

https://oreil.ly/Ecd_m
https://oreil.ly/r2MSV
https://oreil.ly/r2MSV

+--------+--------+-----+
|bedrooms|features|price|
+--------+--------+-----+
1.0	[1.0]	200.0
1.0	[1.0]	130.0
1.0	[1.0]	95.0
1.0	[1.0]	250.0
3.0	[3.0]	250.0
1.0	[1.0]	115.0
1.0	[1.0]	105.0
1.0	[1.0]	86.0
1.0	[1.0]	100.0
2.0	[2.0]	220.0
+--------+--------+-----+

You’ll notice that in the Scala code, we had to instantiate the new VectorAssembler
object as well as using setter methods to change the input and output columns. In
Python, you have the option to pass the parameters directly to the constructor of Vec
torAssembler or to use the setter methods, but in Scala you can only use the setter
methods.

We cover the fundamentals of linear regression next, but if you are already familiar
with the algorithm, please skip to “Using Estimators to Build Models” on page 295.

Understanding Linear Regression
Linear regression models a linear relationship between your dependent variable (or
label) and one or more independent variables (or features). In our case, we want to fit
a linear regression model to predict the price of an Airbnb rental given the number of
bedrooms.

In Figure 10-6, we have a single feature x and an output y (this is our dependent vari‐
able). Linear regression seeks to fit an equation for a line to x and y, which for scalar
variables can be expressed as y = mx + b, where m is the slope and b is the offset or
intercept.

The dots indicate the true (x, y) pairs from our data set, and the solid line indicates
the line of best fit for this data set. The data points do not perfectly line up, so we
usually think of linear regression as fitting a model to y ≈ mx + b + ε, where ε (epsi‐
lon) is an error drawn independently per record x from some distribution. These are
the errors between our model predictions and the true values. Often we think of ε as
being Gaussian, or normally distributed. The vertical lines above the regression line
indicate positive ε (or residuals), where your true values are above the predicted val‐
ues, and the vertical lines below the regression line indicate negative residuals. The
goal of linear regression is to find a line that minimizes the square of these residuals.
You’ll notice that the line can extrapolate predictions for data points it hasn’t seen.

294 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/dhgZf

Figure 10-6. Univariate linear regression

Linear regression can also be extended to handle multiple independent variables. If
we had three features as input, x = [x1, x2, x3], then we could model y as y ≈ w0 + w1x1
+ w2x2 + w3x3 + ε. In this case, there is a separate coefficient (or weight) for each fea‐
ture and a single intercept (w0 instead of b here). The process of estimating the coeffi‐
cients and intercept for our model is called learning (or fitting) the parameters for the
model. For right now, we’ll focus on the univariate regression example of predicting
price given the number of bedrooms, and we’ll get back to multivariate linear regres‐
sion in a bit.

Using Estimators to Build Models
After setting up our vectorAssembler, we have our data prepared and transformed
into a format that our linear regression model expects. In Spark, LinearRegression is
a type of estimator—it takes in a DataFrame and returns a Model. Estimators learn
parameters from your data, have an estimator_name.fit() method, and are eagerly
evaluated (i.e., kick off Spark jobs), whereas transformers are lazily evaluated. Some
other examples of estimators include Imputer, DecisionTreeClassifier, and Random
ForestRegressor.

You’ll notice that our input column for linear regression (features) is the output
from our vectorAssembler:

In Python
from pyspark.ml.regression import LinearRegression
lr = LinearRegression(featuresCol="features", labelCol="price")
lrModel = lr.fit(vecTrainDF)

// In Scala
import org.apache.spark.ml.regression.LinearRegression
val lr = new LinearRegression()
 .setFeaturesCol("features")

Designing Machine Learning Pipelines | 295

https://oreil.ly/zxlnL

 .setLabelCol("price")

val lrModel = lr.fit(vecTrainDF)

lr.fit() returns a LinearRegressionModel (lrModel), which is a transformer. In
other words, the output of an estimator’s fit() method is a transformer. Once the
estimator has learned the parameters, the transformer can apply these parameters to
new data points to generate predictions. Let’s inspect the parameters it learned:

In Python
m = round(lrModel.coefficients[0], 2)
b = round(lrModel.intercept, 2)
print(f"""The formula for the linear regression line is
price = {m}*bedrooms + {b}""")

// In Scala
val m = lrModel.coefficients(0)
val b = lrModel.intercept
println(f"""The formula for the linear regression line is
price = $m%1.2f*bedrooms + $b%1.2f""")

This prints:

The formula for the linear regression line is price = 123.68*bedrooms + 47.51

Creating a Pipeline
If we want to apply our model to our test set, then we need to prepare that data in the
same way as the training set (i.e., pass it through the vector assembler). Oftentimes
data preparation pipelines will have multiple steps, and it becomes cumbersome to
remember not only which steps to apply, but also the ordering of the steps. This is the
motivation for the Pipeline API: you simply specify the stages you want your data to
pass through, in order, and Spark takes care of the processing for you. They provide
the user with better code reusability and organization. In Spark, Pipelines are esti‐
mators, whereas PipelineModels—fitted Pipelines—are transformers.

Let’s build our pipeline now:

In Python
from pyspark.ml import Pipeline
pipeline = Pipeline(stages=[vecAssembler, lr])
pipelineModel = pipeline.fit(trainDF)

// In Scala
import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline().setStages(Array(vecAssembler, lr))
val pipelineModel = pipeline.fit(trainDF)

Another advantage of using the Pipeline API is that it determines which stages are
estimators/transformers for you, so you don’t have to worry about specifying
name.fit() versus name.transform() for each of the stages.

296 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/LASya
https://oreil.ly/MG3YM

Since pipelineModel is a transformer, it is straightforward to apply it to our test data
set too:

In Python
predDF = pipelineModel.transform(testDF)
predDF.select("bedrooms", "features", "price", "prediction").show(10)

// In Scala
val predDF = pipelineModel.transform(testDF)
predDF.select("bedrooms", "features", "price", "prediction").show(10)

+--------+--------+------+------------------+
|bedrooms|features| price| prediction|
+--------+--------+------+------------------+
1.0	[1.0]	85.0	171.18598011578285
1.0	[1.0]	45.0	171.18598011578285
1.0	[1.0]	70.0	171.18598011578285
1.0	[1.0]	128.0	171.18598011578285
1.0	[1.0]	159.0	171.18598011578285
2.0	[2.0]	250.0	294.86172649777757
1.0	[1.0]	99.0	171.18598011578285
1.0	[1.0]	95.0	171.18598011578285
1.0	[1.0]	100.0	171.18598011578285
1.0	[1.0]	2010.0	171.18598011578285
+--------+--------+------+------------------+

In this code we built a model using only a single feature, bedrooms (you can find the
notebook for this chapter in the book’s GitHub repo). However, you may want to
build a model using all of your features, some of which may be categorical, such as
host_is_superhost. Categorical features take on discrete values and have no intrin‐
sic ordering—examples include occupations or country names. In the next section
we’ll consider a solution for how to treat these kinds of variables, known as one-hot
encoding.

One-hot encoding
In the pipeline we just created, we only had two stages, and our linear regression
model only used one feature. Let’s take a look at how to build a slightly more complex
pipeline that incorporates all of our numeric and categorical features.

Most machine learning models in MLlib expect numerical values as input, repre‐
sented as vectors. To convert categorical values into numeric values, we can use a
technique called one-hot encoding (OHE). Suppose we have a column called Animal
and we have three types of animals: Dog, Cat, and Fish. We can’t pass the string types
into our ML model directly, so we need to assign a numeric mapping, such as this:

Animal = {"Dog", "Cat", "Fish"}
"Dog" = 1, "Cat" = 2, "Fish" = 3

Designing Machine Learning Pipelines | 297

https://github.com/databricks/LearningSparkV2

However, using this approach we’ve introduced some spurious relationships into our
data set that weren’t there before. For example, why did we assign Cat twice the value
of Dog? The numeric values we use should not introduce any relationships into our
data set. Instead, we want to create a separate column for every distinct value in our
Animal column:

"Dog" = [1, 0, 0]
"Cat" = [0, 1, 0]
"Fish" = [0, 0, 1]

If the animal is a dog, it has a one in the first column and zeros elsewhere. If it is a cat,
it has a one in the second column and zeros elsewhere. The ordering of the columns
is irrelevant. If you’ve used pandas before, you’ll note that this does the same thing as
pandas.get_dummies().

If we had a zoo of 300 animals, would OHE massively increase consumption of mem‐
ory/compute resources? Not with Spark! Spark internally uses a SparseVector when
the majority of the entries are 0, as is often the case after OHE, so it does not waste
space storing 0 values. Let’s take a look at an example to better understand how
SparseVectors work:

DenseVector(0, 0, 0, 7, 0, 2, 0, 0, 0, 0)
SparseVector(10, [3, 5], [7, 2])

The DenseVector in this example contains 10 values, all but 2 of which are 0. To cre‐
ate a SparseVector, we need to keep track of the size of the vector, the indices of the
nonzero elements, and the corresponding values at those indices. In this example the
size of the vector is 10, there are two nonzero values at indices 3 and 5, and the corre‐
sponding values at those indices are 7 and 2.

There are a few ways to one-hot encode your data with Spark. A common approach is
to use the StringIndexer and OneHotEncoder. With this approach, the first step is to
apply the StringIndexer estimator to convert categorical values into category indi‐
ces. These category indices are ordered by label frequencies, so the most frequent
label gets index 0, which provides us with reproducible results across various runs of
the same data.

Once you have created your category indices, you can pass those as input to the
OneHotEncoder (OneHotEncoderEstimator if using Spark 2.3/2.4). The OneHotEn
coder maps a column of category indices to a column of binary vectors. Take a look
at Table 10-2 to see the differences in the StringIndexer and OneHotEncoder APIs
from Spark 2.3/2.4 to 3.0.

298 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/4BsUq
https://oreil.ly/7rOcC
https://oreil.ly/F37Ht
https://oreil.ly/mqGP6
https://oreil.ly/D07R0
https://oreil.ly/SmZTw

Table 10-2. StringIndexer and OneHotEncoder changes in Spark 3.0

 Spark 2.3 and 2.4 Spark 3.0
StringIndexer Single column as input/output Multiple columns as input/output

OneHotEncoder Deprecated Multiple columns as input/output

OneHotEncoderEstimator Multiple columns as input/output N/A

The following code demonstrates how to one-hot encode our categorical features. In
our data set, any column of type string is treated as a categorical feature, but some‐
times you might have numeric features you want treated as categorical or vice versa.
You’ll need to carefully identify which columns are numeric and which are
categorical:

In Python
from pyspark.ml.feature import OneHotEncoder, StringIndexer

categoricalCols = [field for (field, dataType) in trainDF.dtypes
 if dataType == "string"]
indexOutputCols = [x + "Index" for x in categoricalCols]
oheOutputCols = [x + "OHE" for x in categoricalCols]

stringIndexer = StringIndexer(inputCols=categoricalCols,
 outputCols=indexOutputCols,
 handleInvalid="skip")
oheEncoder = OneHotEncoder(inputCols=indexOutputCols,
 outputCols=oheOutputCols)

numericCols = [field for (field, dataType) in trainDF.dtypes
 if ((dataType == "double") & (field != "price"))]
assemblerInputs = oheOutputCols + numericCols
vecAssembler = VectorAssembler(inputCols=assemblerInputs,
 outputCol="features")

// In Scala
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}

val categoricalCols = trainDF.dtypes.filter(_._2 == "StringType").map(_._1)
val indexOutputCols = categoricalCols.map(_ + "Index")
val oheOutputCols = categoricalCols.map(_ + "OHE")

val stringIndexer = new StringIndexer()
 .setInputCols(categoricalCols)
 .setOutputCols(indexOutputCols)
 .setHandleInvalid("skip")

val oheEncoder = new OneHotEncoder()
 .setInputCols(indexOutputCols)
 .setOutputCols(oheOutputCols)

val numericCols = trainDF.dtypes.filter{ case (field, dataType) =>
 dataType == "DoubleType" && field != "price"}.map(_._1)

Designing Machine Learning Pipelines | 299

val assemblerInputs = oheOutputCols ++ numericCols
val vecAssembler = new VectorAssembler()
 .setInputCols(assemblerInputs)
 .setOutputCol("features")

Now you might be wondering, “How does the StringIndexer handle new categories
that appear in the test data set, but not in the training data set?” There is a
handleInvalid parameter that specifies how you want to handle them. The options
are skip (filter out rows with invalid data), error (throw an error), or keep (put inva‐
lid data in a special additional bucket, at index numLabels). For this example, we just
skipped the invalid records.

One difficulty with this approach is that you need to tell StringIndexer explicitly
which features should be treated as categorical features. You could use
VectorIndexer to automatically detect all the categorical variables, but it is computa‐
tionally expensive as it has to iterate over every single column and detect if it has
fewer than maxCategories distinct values. maxCategories is a parameter the user
specifies, and determining this value can also be difficult.

Another approach is to use RFormula. The syntax for this is inspired by the R pro‐
gramming language. With RFormula, you provide your label and which features you
want to include. It supports a limited subset of the R operators, including ~, ., :, +,
and -. For example, you might specify formula = "y ~ bedrooms + bathrooms",
which means to predict y given just bedrooms and bathrooms, or formula = "y
~ .", which means to use all of the available features (and automatically excludes y
from the features). RFormula will automatically StringIndex and OHE all of your
string columns, convert your numeric columns to double type, and combine all of
these into a single vector using VectorAssembler under the hood. Thus, we can
replace all of the preceding code with a single line, and we will get the same result:

In Python
from pyspark.ml.feature import RFormula

rFormula = RFormula(formula="price ~ .",
 featuresCol="features",
 labelCol="price",
 handleInvalid="skip")

// In Scala
import org.apache.spark.ml.feature.RFormula

val rFormula = new RFormula()
 .setFormula("price ~ .")
 .setFeaturesCol("features")
 .setLabelCol("price")
 .setHandleInvalid("skip")

300 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/tNE1d
https://oreil.ly/Jh7Q9

The downside of RFormula automatically combining the StringIndexer and
OneHotEncoder is that one-hot encoding is not required or recommended for all algo‐
rithms. For example, tree-based algorithms can handle categorical variables directly if
you just use the StringIndexer for the categorical features. You do not need to one-
hot encode categorical features for tree-based methods, and it will often make your
tree-based models worse. Unfortunately, there is no one-size-fits-all solution for fea‐
ture engineering, and the ideal approach is closely related to the downstream algo‐
rithms you plan to apply to your data set.

If someone else performs the feature engineering for you, make
sure they document how they generated those features.

Once you’ve written the code to transform your data set, you can add a linear regres‐
sion model using all of the features as input.

Here, we put all the feature preparation and model building into the pipeline, and
apply it to our data set:

In Python
lr = LinearRegression(labelCol="price", featuresCol="features")
pipeline = Pipeline(stages = [stringIndexer, oheEncoder, vecAssembler, lr])
Or use RFormula
pipeline = Pipeline(stages = [rFormula, lr])

pipelineModel = pipeline.fit(trainDF)
predDF = pipelineModel.transform(testDF)
predDF.select("features", "price", "prediction").show(5)

// In Scala
val lr = new LinearRegression()
 .setLabelCol("price")
 .setFeaturesCol("features")
val pipeline = new Pipeline()
 .setStages(Array(stringIndexer, oheEncoder, vecAssembler, lr))
// Or use RFormula
// val pipeline = new Pipeline().setStages(Array(rFormula, lr))

val pipelineModel = pipeline.fit(trainDF)
val predDF = pipelineModel.transform(testDF)
predDF.select("features", "price", "prediction").show(5)

+--------------------+-----+------------------+
| features|price| prediction|
+--------------------+-----+------------------+
(98,[0,3,6,7,23,4...	85.0	55.80250714362137
(98,[0,3,6,7,23,4...	45.0	22.74720286761658
(98,[0,3,6,7,23,4...	70.0	27.115811183814913

Designing Machine Learning Pipelines | 301

https://oreil.ly/xfR-_
https://oreil.ly/xfR-_

|(98,[0,3,6,7,13,4...|128.0|-91.60763412465076|
|(98,[0,3,6,7,13,4...|159.0| 94.70374072351933|
+--------------------+-----+------------------+

As you can see, the features column is represented as a SparseVector. There are 98
features after one-hot encoding, followed by the nonzero indices and then the values
themselves. You can see the whole output if you pass in truncate=False to show().

How is our model performing? You can see that while some of the predictions might
be considered “close,” others are far off (a negative price for a rental!?). Next, we’ll
numerically evaluate how well our model performs across our entire test set.

Evaluating Models
Now that we have built a model, we need to evaluate how well it performs. In
spark.ml there are classification, regression, clustering, and ranking evaluators
(introduced in Spark 3.0). Given that this is a regression problem, we will use root-
mean-square error (RMSE) and R2 (pronounced “R-squared”) to evaluate our model’s
performance.

RMSE
RMSE is a metric that ranges from zero to infinity. The closer it is to zero, the better.

Let’s walk through the mathematical formula step by step:

1. Compute the difference (or error) between the true value yi and the predicted
value ŷi (pronounced y-hat, where the “hat” indicates that it is a predicted value
of the quantity under the hat):

Error = yi − y i

2. Square the difference between yi and ŷi so that our positive and negative residuals
do not cancel out. This is known as the squared error:

Square Error (SE) = yi − y i
2

3. Then we sum up the squared error for all n of our data points, known as the sum
of squared errors (SSE) or sum of squared residuals:

Sum of Squared Errors (SSE) = ∑
i = 1

n
yi − y i

2

302 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/mAQXq
https://oreil.ly/mAQXq
https://oreil.ly/nE8Cp

4. However, the SSE grows with the number of records n in the data set, so we want
to normalize it by the number of records. The gives us the mean-squared error
(MSE), a very commonly used regression metric:

Mean Squared Error (MSE) = 1
n ∑

i = 1

n
yi − y i

2

5. If we stop at MSE, then our error term is on the scale of unit2. We’ll often take the
square root of the MSE to get the error back on the scale of the original unit,
which gives us the root-mean-square error (RMSE):

Root Mean Squared Error (RMSE) = 1
n ∑

i = 1

n
yi − y i

2

Let’s evaluate our model using RMSE:

In Python
from pyspark.ml.evaluation import RegressionEvaluator
regressionEvaluator = RegressionEvaluator(
 predictionCol="prediction",
 labelCol="price",
 metricName="rmse")
rmse = regressionEvaluator.evaluate(predDF)
print(f"RMSE is {rmse:.1f}")

// In Scala
import org.apache.spark.ml.evaluation.RegressionEvaluator
val regressionEvaluator = new RegressionEvaluator()
 .setPredictionCol("prediction")
 .setLabelCol("price")
 .setMetricName("rmse")
val rmse = regressionEvaluator.evaluate(predDF)
println(f"RMSE is $rmse%.1f")

This produces the following output:

RMSE is 220.6

Interpreting the value of RMSE. So how do we know if 220.6 is a good value for the
RMSE? There are various ways to interpret this value, one of which is to build a sim‐
ple baseline model and compute its RMSE to compare against. A common baseline
model for regression tasks is to compute the average value of the label on the training
set ȳ (pronounced y-bar), then predict ȳ for every record in the test data set and com‐
pute the resulting RMSE (example code is available in the book’s GitHub repo). If you
try this, you will see that our baseline model has an RMSE of 240.7, so we beat our

Designing Machine Learning Pipelines | 303

https://github.com/databricks/LearningSparkV2

baseline. If you don’t beat the baseline, then something probably went wrong in your
model building process.

If this were a classification problem, you might want to predict the
most prevalent class as your baseline model.

Keep in mind that the unit of your label directly impacts your RMSE. For example, if
your label is height, then your RMSE will be higher if you use centimeters rather than
meters as your unit of measurement. You could arbitrarily decrease the RMSE by
using a different unit, which is why it is important to compare your RMSE against a
baseline.

There are also some metrics that naturally give you an intuition of how you are per‐
forming against a baseline, such as R2, which we discuss next.

R2

Despite the name R2 containing “squared,” R2 values range from negative infinity to 1.
Let’s take a look at the math behind this metric. R2 is computed as follows:

R2 = 1 −
SSres
SStot

where SStot is the total sum of squares if you always predict ȳ:

SStot = ∑
i = 1

n
yi − y 2

and SSres is the sum of residuals squared from your model predictions (also known as
the sum of squared errors, which we used to compute the RMSE):

SSres = ∑
i = 1

n
yi − y i

2

If your model perfectly predicts every data point, then your SSres = 0, making your R2

= 1. And if your SSres = SStot, then the fraction is 1/1, so your R2 is 0. This is what hap‐
pens if your model performs the same as always predicting the average value, ȳ.

But what if your model performs worse than always predicting ȳ and your SSres is
really large? Then your R2 can actually be negative! If your R2 is negative, you should

304 | Chapter 10: Machine Learning with MLlib

reevaluate your modeling process. The nice thing about using R2 is that you don’t
necessarily need to define a baseline model to compare against.

If we want to change our regression evaluator to use R2, instead of redefining the
regression evaluator, we can set the metric name using the setter property:

In Python
r2 = regressionEvaluator.setMetricName("r2").evaluate(predDF)
print(f"R2 is {r2}")

// In Scala
val r2 = regressionEvaluator.setMetricName("r2").evaluate(predDF)
println(s"R2 is $r2")

The output is:

R2 is 0.159854

Our R2 is positive, but it’s very close to 0. One of the reasons why our model is not
performing too well is because our label, price, appears to be log-normally dis‐
tributed. If a distribution is log-normal, it means that if we take the logarithm of the
value, the result looks like a normal distribution. Price is often log-normally dis‐
tributed. If you think about rental prices in San Francisco, most cost around $200 per
night, but there are some that rent for thousands of dollars a night! You can see the
distribution of our Airbnb prices for our training Dataset in Figure 10-7.

Figure 10-7. San Francisco housing price distribution

Let’s take a look at the resulting distribution if we instead look at the log of the price
(Figure 10-8).

Designing Machine Learning Pipelines | 305

https://oreil.ly/0Patq
https://oreil.ly/0Patq

Figure 10-8. San Francisco housing log-price distribution

You can see here that our log-price distribution looks a bit more like a normal distri‐
bution. As an exercise, try building a model to predict price on the log scale, then
exponentiate the prediction to get it out of log scale and evaluate your model. The
code can also be found in this chapter’s notebook in the book’s GitHub repo. You
should see that your RMSE decreases and your R2 increases for this data set.

Saving and Loading Models
Now that we have built and evaluated a model, let’s save it to persistent storage for
reuse later (or in the event that our cluster goes down, we don’t have to recompute the
model). Saving models is very similar to writing DataFrames—the API is
model.write().save(path). You can optionally provide the overwrite() command
to overwrite any data contained in that path:

In Python
pipelinePath = "/tmp/lr-pipeline-model"
pipelineModel.write().overwrite().save(pipelinePath)

// In Scala
val pipelinePath = "/tmp/lr-pipeline-model"
pipelineModel.write.overwrite().save(pipelinePath)

When you load your saved models, you need to specify the type of model you are
loading back in (e.g., was it a LinearRegressionModel or a LogisticRegressionMo
del?). For this reason, we recommend you always put your transformers/estimators
into a Pipeline, so that for all your models you load a PipelineModel and only need
to change the file path to the model:

306 | Chapter 10: Machine Learning with MLlib

https://github.com/databricks/LearningSparkV2

In Python
from pyspark.ml import PipelineModel
savedPipelineModel = PipelineModel.load(pipelinePath)

// In Scala
import org.apache.spark.ml.PipelineModel
val savedPipelineModel = PipelineModel.load(pipelinePath)

After loading, you can apply it to new data points. However, you can’t use the weights
from this model as initialization parameters for training a new model (as opposed to
starting with random weights), as Spark has no concept of “warm starts.” If your data
set changes slightly, you’ll have to retrain the entire linear regression model from
scratch.

With our linear regression model built and evaluated, let’s explore how a few other
models perform on our data set. In the next section, we will explore tree-based mod‐
els and look at some common hyperparameters to tune in order to improve model
performance.

Hyperparameter Tuning
When data scientists talk about tuning their models, they often discuss tuning hyper‐
parameters to improve the model’s predictive power. A hyperparameter is an attribute
that you define about the model prior to training, and it is not learned during the
training process (not to be confused with parameters, which are learned in the train‐
ing process). The number of trees in your random forest is an example of a
hyperparameter.

In this section, we will focus on using tree-based models as an example for hyper‐
parameter tuning procedures, but the same concepts apply to other models as well.
Once we set up the mechanics to do hyperparameter tuning with spark.ml, we will
discuss ways to optimize the pipeline. Let’s get started with a brief introduction to
decision trees, followed by how we can use them in spark.ml.

Tree-Based Models
Tree-based models such as decision trees, gradient boosted trees, and random forests
are relatively simple yet powerful models that are easy to interpret (meaning, it is easy
to explain the predictions they make). Hence, they’re quite popular for machine
learning tasks. We’ll get to random forests shortly, but first we need to cover the fun‐
damentals of decision trees.

Hyperparameter Tuning | 307

Decision trees
As an off-the-shelf solution, decision trees are well suited to data mining. They are
relatively fast to build, highly interpretable, and scale-invariant (i.e., standardizing or
scaling the numeric features does not change the performance of the tree). So what is
a decision tree?

A decision tree is a series of if-then-else rules learned from your data for classification
or regression tasks. Suppose we are trying to build a model to predict whether or not
someone will accept a job offer, and the features comprise salary, commute time, free
coffee, etc. If we fit a decision tree to this data set, we might get a model that looks
like Figure 10-9.

Figure 10-9. Decision tree example

The node at the top of the tree is called the “root” of the tree because it’s the first fea‐
ture that we “split” on. This feature should give the most informative split—in this
case, if the salary is less than $50,000, then the majority of candidates will decline the
job offer. The “Decline offer” node is known as a “leaf node” as there are no other
splits coming out of that node; it’s at the end of a branch. (Yes, it’s a bit funny that we
call it a decision “tree” but draw the root of the tree at the top and the leaves at the
bottom!)

However, if the salary offered is greater than $50,000, we proceed to the next most
informative feature in the decision tree, which in this case is the commute time. Even
if the salary is over $50,000, if the commute is longer than one hour, then the major‐
ity of people will decline the job offer.

308 | Chapter 10: Machine Learning with MLlib

We won’t get into the details of how to determine which features
will give you the highest information gain here, but if you’re inter‐
ested, check out Chapter 9 of The Elements of Statistical Learning,
by Trevor Hastie, Robert Tibshirani, and Jerome Friedman
(Springer).

The final feature in our model is free coffee. In this case the decision tree shows that if
the salary is greater than $50,000, the commute is less than an hour, and there is free
coffee, then the majority of people will accept our job offer (if only it were that sim‐
ple!). As a follow-up resource, R2D3 has a great visualization of how decision trees
work.

It is possible to split on the same feature multiple times in a single
decision tree, but each split will occur at a different value.

The depth of a decision tree is the longest path from the root node to any given leaf
node. In Figure 10-9, the depth is three. Trees that are very deep are prone to overfit‐
ting, or memorizing noise in your training data set, but trees that are too shallow will
underfit to your data set (i.e., could have picked up more signal from the data).

With the essence of a decision tree explained, let’s resume the topic of feature prepa‐
ration for decision trees. For decision trees, you don’t have to worry about standard‐
izing or scaling your input features, because this has no impact on the splits—but you
do have to be careful about how you prepare your categorical features.

Tree-based methods can naturally handle categorical variables. In spark.ml, you just
need to pass the categorical columns to the StringIndexer, and the decision tree can
take care of the rest. Let’s fit a decision tree to our data set:

In Python
from pyspark.ml.regression import DecisionTreeRegressor

dt = DecisionTreeRegressor(labelCol="price")

Filter for just numeric columns (and exclude price, our label)
numericCols = [field for (field, dataType) in trainDF.dtypes
 if ((dataType == "double") & (field != "price"))]

Combine output of StringIndexer defined above and numeric columns
assemblerInputs = indexOutputCols + numericCols
vecAssembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features")

Combine stages into pipeline
stages = [stringIndexer, vecAssembler, dt]

Hyperparameter Tuning | 309

https://oreil.ly/VHVOW
https://oreil.ly/uKD8q

pipeline = Pipeline(stages=stages)
pipelineModel = pipeline.fit(trainDF) # This line should error

// In Scala
import org.apache.spark.ml.regression.DecisionTreeRegressor

val dt = new DecisionTreeRegressor()
 .setLabelCol("price")

// Filter for just numeric columns (and exclude price, our label)
val numericCols = trainDF.dtypes.filter{ case (field, dataType) =>
 dataType == "DoubleType" && field != "price"}.map(_._1)

// Combine output of StringIndexer defined above and numeric columns
val assemblerInputs = indexOutputCols ++ numericCols
val vecAssembler = new VectorAssembler()
 .setInputCols(assemblerInputs)
 .setOutputCol("features")

// Combine stages into pipeline
val stages = Array(stringIndexer, vecAssembler, dt)
val pipeline = new Pipeline()
 .setStages(stages)

val pipelineModel = pipeline.fit(trainDF) // This line should error

This produces the following error:

java.lang.IllegalArgumentException: requirement failed: DecisionTree requires
maxBins (= 32) to be at least as large as the number of values in each
categorical feature, but categorical feature 3 has 36 values. Consider removing
this and other categorical features with a large number of values, or add more
training examples.

We can see that there is an issue with the maxBins parameter. What does that parame‐
ter do? maxBins determines the number of bins into which your continuous features
are discretized, or split. This discretization step is crucial for performing distributed
training. There is no maxBins parameter in scikit-learn because all of the data and
the model reside on a single machine. In Spark, however, workers have all the col‐
umns of the data, but only a subset of the rows. Thus, when communicating about
which features and values to split on, we need to be sure they’re all talking about the
same split values, which we get from the common discretization set up at training
time. Let’s take a look at Figure 10-10, which shows the PLANET implementation of
distributed decision trees, to get a better understanding of distributed machine learn‐
ing and illustrate the maxBins parameter.

310 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/a0teT

Figure 10-10. PLANET implementation of distributed decision trees (source: https://
oreil.ly/RAvvP)

Every worker has to compute summary statistics for every feature and every possible
split point, and those statistics will be aggregated across the workers. MLlib requires
maxBins to be large enough to handle the discretization of the categorical columns.
The default value for maxBins is 32, and we had a categorical column with 36 distinct
values, which is why we got the error earlier. While we could increase maxBins to 64
to more accurately represent our continuous features, that would double the number
of possible splits for continuous variables, greatly increasing our computation time.
Let’s instead set maxBins to be 40 and retrain the pipeline. You’ll notice here that we
are using the setter method setMaxBins() to modify the decision tree rather than
redefining it completely:

In Python
dt.setMaxBins(40)
pipelineModel = pipeline.fit(trainDF)

// In Scala
dt.setMaxBins(40)
val pipelineModel = pipeline.fit(trainDF)

Hyperparameter Tuning | 311

https://oreil.ly/RAvvP
https://oreil.ly/RAvvP

Due to differences in implementation, oftentimes you won’t get
exactly the same results when building a model with scikit-learn
versus MLlib. However, that’s OK. The key is to understand why
they are different, and to see what parameters are in your control to
get them to perform the way you need them to. If you are porting
workloads over from scikit-learn to MLlib, we encourage you to
take a look at the spark.ml and scikit-learn documentation to
see what parameters differ, and to tweak those parameters to get
comparable results for the same data. Once the values are close
enough, you can scale up your MLlib model to larger data sizes that
scikit-learn can’t handle.

Now that we have successfully built our model, we can extract the if-then-else rules
learned by the decision tree:

In Python
dtModel = pipelineModel.stages[-1]
print(dtModel.toDebugString)

// In Scala
val dtModel = pipelineModel.stages.last
 .asInstanceOf[org.apache.spark.ml.regression.DecisionTreeRegressionModel]
println(dtModel.toDebugString)

DecisionTreeRegressionModel: uid=dtr_005040f1efac, depth=5, numNodes=47,...
 If (feature 12 <= 2.5)
 If (feature 12 <= 1.5)
 If (feature 5 in {1.0,2.0})
 If (feature 4 in {0.0,1.0,3.0,5.0,9.0,10.0,11.0,13.0,14.0,16.0,18.0,24.0})
 If (feature 3 in
{0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,...})
 Predict: 104.23992784125075
 Else (feature 3 not in {0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,...})
 Predict: 250.7111111111111
...

This is just a subset of the printout, but you’ll notice that it’s possible to split on the
same feature more than once (e.g., feature 12), but at different split values. Also
notice the difference between how the decision tree splits on numeric features versus
categorical features: for numeric features it checks if the value is less than or equal to
the threshold, and for categorical features it checks if the value is in that set or not.

We can also extract the feature importance scores from our model to see the most
important features:

In Python
import pandas as pd

featureImp = pd.DataFrame(
 list(zip(vecAssembler.getInputCols(), dtModel.featureImportances)),

312 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/qFgc5
https://scikit-learn.org/stable

 columns=["feature", "importance"])
featureImp.sort_values(by="importance", ascending=False)

// In Scala
val featureImp = vecAssembler
 .getInputCols.zip(dtModel.featureImportances.toArray)
val columns = Array("feature", "Importance")
val featureImpDF = spark.createDataFrame(featureImp).toDF(columns: _*)

featureImpDF.orderBy($"Importance".desc).show()

Feature Importance
bedrooms 0.283406
cancellation_policyIndex 0.167893
instant_bookableIndex 0.140081
property_typeIndex 0.128179
number_of_reviews 0.126233
neighbourhood_cleansedIndex 0.056200
longitude 0.038810
minimum_nights 0.029473
beds 0.015218
room_typeIndex 0.010905
accommodates 0.003603

While decision trees are very flexible and easy to use, they are not always the most
accurate model. If we were to compute our R2 on the test data set, we would actually
get a negative score! That’s worse than just predicting the average. (You can see this in
this chapter’s notebook in the book’s GitHub repo.)

Let’s look at improving this model by using an ensemble approach that combines dif‐
ferent models to achieve a better result: random forests.

Random forests
Ensembles work by taking a democratic approach. Imagine there are many M&Ms in
a jar. You ask one hundred people to guess the number of M&Ms, and then take the
average of all the guesses. The average is probably closer to the true value than most
of the individual guesses. That same concept applies to machine learning models. If
you build many models and combine/average their predictions, they will be more
robust than those produced by any individual model.

Random forests are an ensemble of decision trees with two key tweaks:

Hyperparameter Tuning | 313

https://github.com/databricks/LearningSparkV2
https://oreil.ly/DoQPU
https://oreil.ly/kpfTc

Bootstrapping samples by rows
Bootstrapping is a technique for simulating new data by sampling with replace‐
ment from your original data. Each decision tree is trained on a different boot‐
strap sample of your data set, which produces slightly different decision trees,
and then you aggregate their predictions. This technique is known as bootstrap
aggregating, or bagging. In a typical random forest implementation, each tree
samples the same number of data points with replacement from the original data
set, and that number can be controlled through the subsamplingRate parameter.

Random feature selection by columns
The main drawback with bagging is that the trees are all highly correlated, and
thus learn similar patterns in your data. To mitigate this problem, each time you
want to make a split you only consider a random subset of the columns (1/3 of
the features for RandomForestRegressor and #features for RandomForestClas
sifier). Due to this randomness you introduce, you typically want each tree to
be quite shallow. You might be thinking: each of these trees will perform worse
than any single decision tree, so how could this approach possibly be better? It
turns out that each of the trees learns something different about your data set,
and combining this collection of “weak” learners into an ensemble makes the for‐
est much more robust than a single decision tree.

Figure 10-11 illustrates a random forest at training time. At each split, it considers 3
of the 10 original features to split on; finally, it picks the best from among those.

Figure 10-11. Random forest training

314 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/CfWIe
https://oreil.ly/CfWIe

The APIs for random forests and decision trees are similar, and both can be applied
to regression or classification tasks:

In Python
from pyspark.ml.regression import RandomForestRegressor
rf = RandomForestRegressor(labelCol="price", maxBins=40, seed=42)

// In Scala
import org.apache.spark.ml.regression.RandomForestRegressor
val rf = new RandomForestRegressor()
 .setLabelCol("price")
 .setMaxBins(40)
 .setSeed(42)

Once you’ve trained your random forest, you can pass new data points through the
different trees trained in the ensemble.

As Figure 10-12 shows, if you build a random forest for classification, it passes the
test point through each of the trees in the forest and takes a majority vote among the
predictions of the individual trees. (By contrast, in regression, the random forest sim‐
ply averages those predictions.) Even though each of these trees is less performant
than any individual decision tree, the collection (or ensemble) actually provides a
more robust model.

Figure 10-12. Random forest predictions

Random forests truly demonstrate the power of distributed machine learning with
Spark, as each tree can be built independently of the other trees (e.g., you do not need
to build tree 3 before you build tree 10). Furthermore, within each level of the tree,
you can parallelize the work to find the optimal splits.

Hyperparameter Tuning | 315

So how do we determine what the optimal number of trees in our random forest or
the max depth of those trees should be? This process is called hyperparameter tuning.
In contrast to a parameter, a hyperparameter is a value that controls the learning pro‐
cess or structure of your model, and it is not learned during training. Both the num‐
ber of trees and the max depth are examples of hyperparameters you can tune for
random forests. Let’s now shift our focus to how we can discover and evaluate the
best random forest model by tuning some hyperparameters.

k-Fold Cross-Validation
Which data set should we use to determine the optimal hyperparameter values? If we
use the training set, then the model is likely to overfit, or memorize the nuances of
our training data. This means it will be less likely to generalize to unseen data. But if
we use the test set, then that will no longer represent “unseen” data, so we won’t be
able to use it to verify how well our model generalizes. Thus, we need another data set
to help us determine the optimal hyperparameters: the validation data set.

For example, instead of splitting our data into an 80/20 train/test split, as we did ear‐
lier, we can do a 60/20/20 split to generate training, validation, and test data sets,
respectively. We can then build our model on the training set, evaluate performance
on the validation set to select the best hyperparameter configuration, and apply the
model to the test set to see how well it performs on new data. However, one of the
downsides of this approach is that we lose 25% of our training data (80% -> 60%),
which could have been used to help improve the model. This motivates the use of the
k-fold cross-validation technique to solve this problem.

With this approach, instead of splitting the data set into separate training, validation,
and test sets, we split it into training and test sets as before—but we use the training
data for both training and validation. To accomplish this, we split our training data
into k subsets, or “folds” (e.g., three). Then, for a given hyperparameter configuration,
we train our model on k–1 folds and evaluate on the remaining fold, repeating this
process k times. Figure 10-13 illustrates this approach.

Figure 10-13. k-fold cross-validation

As this figure shows, if we split our data into three folds, our model is first trained on
the first and second folds (or splits) of the data, and evaluated on the third fold. We
then build the same model with the same hyperparameters on the first and third folds

316 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/SqPGA

of the data, and evaluate its performance on the second fold. Lastly, we build the
model on the second and third folds and evaluate it on the first fold. We then average
the performance of those three (or k) validation data sets as a proxy of how well this
model will perform on unseen data, as every data point had the chance to be part of
the validation data set exactly once. Next, we repeat this process for all of our differ‐
ent hyperparameter configurations to identify the optimal one.

Determining the search space of your hyperparameters can be difficult, and often
doing a random search of hyperparameters outperforms a structured grid search.
There are specialized libraries, such as Hyperopt, to help you identify the optimal
hyperparameter configurations, which we touch upon in Chapter 11.

To perform a hyperparameter search in Spark, take the following steps :

1. Define the estimator you want to evaluate.
2. Specify which hyperparameters you want to vary, as well as their respective val‐

ues, using the ParamGridBuilder.
3. Define an evaluator to specify which metric to use to compare the various

models.
4. Use the CrossValidator to perform cross-validation, evaluating each of the vari‐

ous models.

Let’s start by defining our pipeline estimator:

In Python
pipeline = Pipeline(stages = [stringIndexer, vecAssembler, rf])

// In Scala
val pipeline = new Pipeline()
 .setStages(Array(stringIndexer, vecAssembler, rf))

For our ParamGridBuilder, we’ll vary our maxDepth to be 2, 4, or 6 and numTrees (the
number of trees in our random forest) to be 10 or 100. This will give us a grid of 6 (3
x 2) different hyperparameter configurations in total:

(maxDepth=2, numTrees=10)
(maxDepth=2, numTrees=100)
(maxDepth=4, numTrees=10)
(maxDepth=4, numTrees=100)
(maxDepth=6, numTrees=10)
(maxDepth=6, numTrees=100)

In Python
from pyspark.ml.tuning import ParamGridBuilder
paramGrid = (ParamGridBuilder()
 .addGrid(rf.maxDepth, [2, 4, 6])
 .addGrid(rf.numTrees, [10, 100])
 .build())

Hyperparameter Tuning | 317

https://oreil.ly/gI7G-
http://hyperopt.github.io/hyperopt
https://oreil.ly/7IoxC
https://oreil.ly/qOHrU
https://oreil.ly/ygbF8

// In Scala
import org.apache.spark.ml.tuning.ParamGridBuilder
val paramGrid = new ParamGridBuilder()
 .addGrid(rf.maxDepth, Array(2, 4, 6))
 .addGrid(rf.numTrees, Array(10, 100))
 .build()

Now that we have set up our hyperparameter grid, we need to define how to evaluate
each of the models to determine which one performed best. For this task we will use
the RegressionEvaluator, and we’ll use RMSE as our metric of interest:

In Python
evaluator = RegressionEvaluator(labelCol="price",
 predictionCol="prediction",
 metricName="rmse")

// In Scala
val evaluator = new RegressionEvaluator()
 .setLabelCol("price")
 .setPredictionCol("prediction")
 .setMetricName("rmse")

We will perform our k-fold cross-validation using the CrossValidator, which accepts
an estimator, evaluator, and estimatorParamMaps so that it knows which model to
use, how to evaluate the model, and which hyperparameters to set for the model. We
can also set the number of folds we want to split our data into (numFolds=3), as well
as setting a seed so we have reproducible splits across the folds (seed=42). Let’s then
fit this cross-validator to our training data set:

In Python
from pyspark.ml.tuning import CrossValidator

cv = CrossValidator(estimator=pipeline,
 evaluator=evaluator,
 estimatorParamMaps=paramGrid,
 numFolds=3,
 seed=42)
cvModel = cv.fit(trainDF)

// In Scala
import org.apache.spark.ml.tuning.CrossValidator

val cv = new CrossValidator()
 .setEstimator(pipeline)
 .setEvaluator(evaluator)
 .setEstimatorParamMaps(paramGrid)
 .setNumFolds(3)
 .setSeed(42)
val cvModel = cv.fit(trainDF)

318 | Chapter 10: Machine Learning with MLlib

The output tells us how long the operation took:

Command took 1.07 minutes

So, how many models did we just train? If you answered 18 (6 hyperparameter con‐
figurations x 3-fold cross-validation), you’re close. Once you’ve identified the optimal
hyperparameter configuration, how do you combine those three (or k) models
together? While some models might be easy enough to average together, some are
not. Therefore, Spark retrains your model on the entire training data set once it has
identified the optimal hyperparameter configuration, so in the end we trained 19
models. If you want to retain the intermediate models trained, you can set collect
SubModels=True in the CrossValidator.

To inspect the results of the cross-validator, you can take a look at the avgMetrics:

In Python
list(zip(cvModel.getEstimatorParamMaps(), cvModel.avgMetrics))

// In Scala
cvModel.getEstimatorParamMaps.zip(cvModel.avgMetrics)

Here’s the output:

res1: Array[(org.apache.spark.ml.param.ParamMap, Double)] =
Array(({
 rfr_a132fb1ab6c8-maxDepth: 2,
 rfr_a132fb1ab6c8-numTrees: 10
},303.99522869739343), ({
 rfr_a132fb1ab6c8-maxDepth: 2,
 rfr_a132fb1ab6c8-numTrees: 100
},299.56501993529474), ({
 rfr_a132fb1ab6c8-maxDepth: 4,
 rfr_a132fb1ab6c8-numTrees: 10
},310.63687030886894), ({
 rfr_a132fb1ab6c8-maxDepth: 4,
 rfr_a132fb1ab6c8-numTrees: 100
},294.7369599168999), ({
 rfr_a132fb1ab6c8-maxDepth: 6,
 rfr_a132fb1ab6c8-numTrees: 10
},312.6678169109293), ({
 rfr_a132fb1ab6c8-maxDepth: 6,
 rfr_a132fb1ab6c8-numTrees: 100
},292.101039874209))

We can see that the best model from our CrossValidator (the one with the lowest
RMSE) had maxDepth=6 and numTrees=100. However, this took a long time to run. In
the next section, we will look at how we can decrease the time to train our model
while maintaining the same model performance.

Hyperparameter Tuning | 319

Optimizing Pipelines
If your code takes long enough for you to think about improving it, then you should
optimize it. In the preceding code, even though each of the models in the cross-
validator is technically independent, spark.ml actually trains the collection of models
sequentially rather than in parallel. In Spark 2.3, a parallelism parameter was intro‐
duced to solve this problem. This parameter determines the number of models to
train in parallel, which themselves are fit in parallel. From the Spark Tuning Guide:

The value of parallelism should be chosen carefully to maximize parallelism without
exceeding cluster resources, and larger values may not always lead to improved perfor‐
mance. Generally speaking, a value up to 10 should be sufficient for most clusters.

Let’s set this value to 4 and see if we can train any faster:

In Python
cvModel = cv.setParallelism(4).fit(trainDF)

// In Scala
val cvModel = cv.setParallelism(4).fit(trainDF)

The answer is yes:

Command took 31.45 seconds

We’ve cut the training time in half (from 1.07 minutes to 31.45 seconds), but we can
still improve it further! There’s another trick we can use to speed up model training:
putting the cross-validator inside the pipeline (e.g., Pipeline(stages=[..., cv])
instead of putting the pipeline inside the cross-validator (e.g., CrossValidator(esti
mator=pipeline, ...)). Every time the cross-validator evaluates the pipeline, it runs
through every step of the pipeline for each model, even if some of the steps don’t
change, such as the StringIndexer. By reevaluating every step in the pipeline, we are
learning the same StringIndexer mapping over and over again, even though it’s not
changing.

If instead we put our cross-validator inside our pipeline, then we won’t be reevaluat‐
ing the StringIndexer (or any other estimator) each time we try a different model:

In Python
cv = CrossValidator(estimator=rf,
 evaluator=evaluator,
 estimatorParamMaps=paramGrid,
 numFolds=3,
 parallelism=4,
 seed=42)

pipeline = Pipeline(stages=[stringIndexer, vecAssembler, cv])
pipelineModel = pipeline.fit(trainDF)

// In Scala
val cv = new CrossValidator()

320 | Chapter 10: Machine Learning with MLlib

https://oreil.ly/7-zyU
https://oreil.ly/FCXV7

 .setEstimator(rf)
 .setEvaluator(evaluator)
 .setEstimatorParamMaps(paramGrid)
 .setNumFolds(3)
 .setParallelism(4)
 .setSeed(42)

val pipeline = new Pipeline()
 .setStages(Array(stringIndexer, vecAssembler, cv))
val pipelineModel = pipeline.fit(trainDF)

This trims five seconds off our training time:

Command took 26.21 seconds

Thanks to the parallelism parameter and rearranging the ordering of our pipeline,
that last run was the fastest—and if you apply it to the test data set you’ll see that you
get the same results. Although these gains were on the order of seconds, the same
techniques apply to much larger data sets and models, with correspondingly larger
time savings. You can try running this code yourself by accessing the notebook in the
book’s GitHub repo.

Summary
In this chapter we covered how to build pipelines using Spark MLlib—in particular,
its DataFrame-based API package, spark.ml. We discussed the differences between
transformers and estimators, how to compose them using the Pipeline API, and some
different metrics for evaluating models. We then explored how to use cross-validation
to perform hyperparameter tuning to deliver the best model, as well as tips for opti‐
mizing cross-validation and model training in Spark.

All this sets the context for the next chapter, in which we will discuss deployment
strategies and ways to manage and scale machine learning pipelines with Spark.

Summary | 321

https://github.com/databricks/LearningSparkV2

CHAPTER 11

Managing, Deploying, and Scaling Machine
Learning Pipelines with Apache Spark

In the previous chapter, we covered how to build machine learning pipelines with
MLlib. This chapter will focus on how to manage and deploy the models you train. By
the end of this chapter, you will be able to use MLflow to track, reproduce, and
deploy your MLlib models, discuss the difficulties of and trade-offs among various
model deployment scenarios, and architect scalable machine learning solutions. But
before we discuss deploying models, let’s first discuss some best practices for model
management to get your models ready for deployment.

Model Management
Before you deploy your machine learning model, you should ensure that you can
reproduce and track the model’s performance. For us, end-to-end reproducibility of
machine learning solutions means that we need to be able to reproduce the code that
generated a model, the environment used in training, the data it was trained on, and
the model itself. Every data scientist loves to remind you to set your seeds so you can
reproduce your experiments (e.g., for the train/test split, when using models with
inherent randomness such as random forests). However, there are many more aspects
that contribute to reproducibility than just setting seeds, and some of them are much
more subtle. Here are a few examples:

Library versioning
When a data scientist hands you their code, they may or may not mention the
dependent libraries. While you are able to figure out which libraries are required
by going through the error messages, you won’t be certain which library versions
they used, so you’ll likely install the latest ones. But if their code was built on a
previous version of a library, which may be taking advantage of some default

323

behavior that differs from the version you installed, using the latest version can
cause the code to break or the results to differ (for example, consider how
XGBoost changed how it handles missing values in v0.90).

Data evolution
Suppose you build a model on June 1, 2020, and keep track of all your hyperpara‐
meters, libraries, etc. You then try to reproduce the same model on July 1, 2020—
but the pipeline breaks or the results differ because the underlying data has
changed, which could happen if someone added an extra column or an order of
magnitude more data after the initial build.

Order of execution
If a data scientist hands you their code, you should be able to run it top-to-
bottom without error. However, data scientists are notorious for running things
out of order, or running the same stateful cell multiple times, making their results
very difficult to reproduce. (They might also check in a copy of the code with dif‐
ferent hyperparameters than those used to train the final model!)

Parallel operations
To maximize throughput, GPUs will run many operations in parallel. However,
the order of execution is not always guaranteed, which can lead to nondetermin‐
istic outputs. This is a known problem with functions like tf.reduce_sum() and
when aggregating floating-point numbers (which have limited precision): the
order in which you add them may generate slightly different results, which can be
exacerbated across many iterations.

An inability to reproduce your experiments can often be a blocker in getting business
units to adopt your model or put it into production. While you could build your own
in-house tools for tracking your models, data, dependency versions, etc., they may
become obsolete, brittle, and take significant development effort to maintain. Equally
important is having industry-wide standards for managing models so that they can be
easily shared with partners. There are both open source and proprietary tools that
can help us with reproducing our machine learning experiments by abstracting away
many of these common difficulties. This section will focus on MLflow, as it has the
tightest integration with MLlib of the currently available open source model manage‐
ment tools.

MLflow
MLflow is an open source platform that helps developers reproduce and share experi‐
ments, manage models, and much more. It provides interfaces in Python, R, and Java/
Scala, as well as a REST API. As shown in Figure 11-1, MLflow has four main
components:

324 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://xgboost.readthedocs.io/en/latest
https://oreil.ly/frAKS
https://oreil.ly/FxNt2
https://mlflow.org

Tracking
Provides APIs to record parameters, metrics, code versions, models, and artifacts
such as plots, and text.

Projects
A standardized format to package your data science projects and their dependen‐
cies to run on other platforms. It helps you manage the model training process.

Models
A standardized format to package models to deploy to diverse execution environ‐
ments. It provides a consistent API for loading and applying models, regardless
of the algorithm or library used to build the model.

Registry
A repository to keep track of model lineage, model versions, stage transitions,
and annotations.

Figure 11-1. MLflow components

Let’s track the MLlib model experiments we ran in Chapter 10 for reproducibility. We
will then see how the other components of MLflow come into play when we discuss
model deployment. To get started with MLflow, simply run pip install mlflow on
your local host.

Tracking
MLflow Tracking is a logging API that is agnostic to the libraries and environments
that actually do the training. It is organized around the concept of runs, which are
executions of data science code. Runs are aggregated into experiments, such that
many runs can be part of a given experiment.

The MLflow tracking server can host many experiments. You can log to the tracking
server using a notebook, local app, or cloud job, as shown in Figure 11-2.

Model Management | 325

Figure 11-2. MLflow tracking server

Let’s examine a few things that can be logged to the tracking server:

Parameters
Key/value inputs to your code—e.g., hyperparameters like num_trees or
max_depth in your random forest

Metrics
Numeric values (can update over time)—e.g., RMSE or accuracy values

Artifacts
Files, data, and models—e.g., matplotlib images, or Parquet files

Metadata
Information about the run, such as the source code that executed the run or the
version of the code (e.g., the Git commit hash string for the code version)

Models
The model(s) you trained

By default, the tracking server records everything to the filesystem, but you can spec‐
ify a database for faster querying, such as for the parameters and metrics. Let’s add
MLflow tracking to our random forest code from Chapter 10:

326 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://oreil.ly/awTsZ
https://oreil.ly/awTsZ

In Python
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator

filePath = """/databricks-datasets/learning-spark-v2/sf-airbnb/
sf-airbnb-clean.parquet"""
airbnbDF = spark.read.parquet(filePath)
(trainDF, testDF) = airbnbDF.randomSplit([.8, .2], seed=42)

categoricalCols = [field for (field, dataType) in trainDF.dtypes
 if dataType == "string"]
indexOutputCols = [x + "Index" for x in categoricalCols]
stringIndexer = StringIndexer(inputCols=categoricalCols,
 outputCols=indexOutputCols,
 handleInvalid="skip")

numericCols = [field for (field, dataType) in trainDF.dtypes
 if ((dataType == "double") & (field != "price"))]
assemblerInputs = indexOutputCols + numericCols
vecAssembler = VectorAssembler(inputCols=assemblerInputs,
 outputCol="features")

rf = RandomForestRegressor(labelCol="price", maxBins=40, maxDepth=5,
 numTrees=100, seed=42)

pipeline = Pipeline(stages=[stringIndexer, vecAssembler, rf])

To start logging with MLflow, you will need to start a run using mlflow.start_run().
Instead of explicitly calling mlflow.end_run(), the examples in this chapter will use a
with clause to automatically end the run at the end of the with block:

In Python
import mlflow
import mlflow.spark
import pandas as pd

with mlflow.start_run(run_name="random-forest") as run:
 # Log params: num_trees and max_depth
 mlflow.log_param("num_trees", rf.getNumTrees())
 mlflow.log_param("max_depth", rf.getMaxDepth())

 # Log model
 pipelineModel = pipeline.fit(trainDF)
 mlflow.spark.log_model(pipelineModel, "model")

 # Log metrics: RMSE and R2
 predDF = pipelineModel.transform(testDF)
 regressionEvaluator = RegressionEvaluator(predictionCol="prediction",
 labelCol="price")
 rmse = regressionEvaluator.setMetricName("rmse").evaluate(predDF)

Model Management | 327

 r2 = regressionEvaluator.setMetricName("r2").evaluate(predDF)
 mlflow.log_metrics({"rmse": rmse, "r2": r2})

 # Log artifact: feature importance scores
 rfModel = pipelineModel.stages[-1]
 pandasDF = (pd.DataFrame(list(zip(vecAssembler.getInputCols(),
 rfModel.featureImportances)),
 columns=["feature", "importance"])
 .sort_values(by="importance", ascending=False))

 # First write to local filesystem, then tell MLflow where to find that file
 pandasDF.to_csv("feature-importance.csv", index=False)
 mlflow.log_artifact("feature-importance.csv")

Let’s examine the MLflow UI, which you can access by running mlflow ui in your
terminal and navigating to http://localhost:5000/. Figure 11-3 shows a screenshot of
the UI.

Figure 11-3. The MLflow UI

The UI stores all the runs for a given experiment. You can search across all the runs,
filter for those that meet particular criteria, compare runs side by side, etc. If you
wish, you can also export the contents as a CSV file to analyze locally. Click on the
run in the UI named "random-forest". You should see a screen like Figure 11-4.

328 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

Figure 11-4. Random forest run

You’ll notice that it keeps track of the source code used for this MLflow run, as well as
storing all the corresponding parameters, metrics, etc. You can add notes about this
run in free text, as well as tags. You cannot modify the parameters or metrics after the
run has finished.

You can also query the tracking server using the MlflowClient or REST API:

In Python
from mlflow.tracking import MlflowClient

client = MlflowClient()
runs = client.search_runs(run.info.experiment_id,
 order_by=["attributes.start_time desc"],
 max_results=1)

run_id = runs[0].info.run_id
runs[0].data.metrics

Model Management | 329

This produces the following output:

{'r2': 0.22794251914574226, 'rmse': 211.5096898777315}

We have hosted this code as an MLflow project in the GitHub repo for this book, so
you can experiment running it with different hyperparameter values for max_depth
and num_trees. The YAML file inside the MLflow project specifies the library depen‐
dencies so this code can be run in other environments:

In Python
mlflow.run(
 "https://github.com/databricks/LearningSparkV2/#mlflow-project-example",
 parameters={"max_depth": 5, "num_trees": 100})

Or on the command line
mlflow run https://github.com/databricks/LearningSparkV2/#mlflow-project-example
-P max_depth=5 -P num_trees=100

Now that you have tracked and reproduced your experiments, let’s discuss the various
deployment options available for your MLlib models.

Model Deployment Options with MLlib
Deploying machine learning models means something different for every organiza‐
tion and use case. Business constraints will impose different requirements for latency,
throughput, cost, etc., which dictate which mode of model deployment is suitable for
the task at hand—be it batch, streaming, real-time, or mobile/embedded. Deploying
models on mobile/embedded systems is outside the scope of this book, so we will
focus primarily on the other options. Table 11-1 shows the throughput and latency
trade-offs for these three deployment options for generating predictions. We care
about both the number of concurrent requests and the size of those requests, and the
resulting solutions will look quite different.

Table 11-1. Batch, streaming, and real-time comparison

Throughput Latency Example application
Batch High High (hours to days) Customer churn prediction
Streaming Medium Medium (seconds to minutes) Dynamic pricing
Real-time Low Low (milliseconds) Online ad bidding

Batch processing generates predictions on a regular schedule and writes the results
out to persistent storage to be served elsewhere. It is typically the cheapest and easiest
deployment option as you only need to pay for compute during your scheduled run.
Batch processing is much more efficient per data point because you accumulate less
overhead when amortized across all predictions made. This is particularly the case
with Spark, because of the overhead of communicating back and forth between the
driver and the executors—you wouldn’t want to make predictions one data point at a

330 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://oreil.ly/PleOQ
https://github.com/databricks/LearningSparkV2
https://oreil.ly/qp1nZ
https://oreil.ly/R7fzj

time! However, its main drawback is latency, as it is typically scheduled with a period
of hours or days to generate the next batch of predictions.

Streaming provides a nice trade-off between throughput and latency. You will contin‐
uously make predictions on micro-batches of data and get your predictions in sec‐
onds to minutes. If you are using Structured Streaming, almost all of your code will
look identical to the batch use case, making it easy to go back and forth between these
two options. With streaming, you will have to pay for the VMs or computing resour‐
ces you use to continually stay up and running, and ensure that you have configured
the stream properly to be fault tolerant and provide buffering if there are spikes in the
incoming data.

Real-time deployment prioritizes latency over throughput and generates predictions
in a few milliseconds. Your infrastructure will need to support load balancing and be
able to scale to many concurrent requests if there is a large spike in demand (e.g., for
online retailers around the holidays). Sometimes when people say “real-time deploy‐
ment” they mean extracting precomputed predictions in real time, but here we’re
referring to generating model predictions in real time. Real-time deployment is the
only option that Spark cannot meet the latency requirements for, so to use it you will
need to export your model outside of Spark. For example, if you intend to use a REST
endpoint for real-time model inference (say, computing predictions in under 50 ms),
MLlib does not meet the latency requirements necessary for this application, as
shown in Figure 11-5. You will need to get your feature preparation and model out of
Spark, which can be time-consuming and difficult.

Figure 11-5. Deployment options for MLlib

Before you begin the modeling process, you need to define your model deployment
requirements. MLlib and Spark are just a few tools in your toolbox, and you need to
understand when and where they should be applied. The remainder of this section

Model Deployment Options with MLlib | 331

discusses the deployment options for MLlib in more depth, and then we’ll consider
the deployment options with Spark for non-MLlib models.

Batch
Batch deployments represent the majority of use cases for deploying machine learn‐
ing models, and this is arguably the easiest option to implement. You will run a regu‐
lar job to generate predictions, and save the results to a table, database, data lake, etc.
for downstream consumption. In fact, you have already seen how to generate batch
predictions in Chapter 10 with MLlib. MLlib’s model.transform() will apply the
model in parallel to all partitions of your DataFrame:

In Python
Load saved model with MLflow
import mlflow.spark
pipelineModel = mlflow.spark.load_model(f"runs:/{run_id}/model")

Generate predictions
inputDF = spark.read.parquet("/databricks-datasets/learning-spark-v2/
 sf-airbnb/sf-airbnb-clean.parquet")

predDF = pipelineModel.transform(inputDF)

A few things to keep in mind with batch deployments are:

How frequently will you generate predictions?
There is a trade-off between latency and throughput. You will get higher
throughput batching many predictions together, but then the time it takes to
receive any individual predictions will be much longer, delaying your ability to
act on these predictions.

How often will you retrain the model?
Unlike libraries like sklearn or TensorFlow, MLlib does not support online
updates or warm starts. If you’d like to retrain your model to incorporate the lat‐
est data, you’ll have to retrain the entire model from scratch, rather than getting
to leverage the existing parameters. In terms of the frequency of retraining, some
people will set up a regular job to retrain the model (e.g., once a month), while
others will actively monitor the model drift to identify when they need to retrain.

How will you version the model?
You can use the MLflow Model Registry to keep track of the models you are
using and control how they are transitioned to/from staging, production, and
archived. You can see a screenshot of the Model Registry in Figure 11-6. You can
use the Model Registry with the other deployment options too.

332 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://oreil.ly/aX4dT
https://oreil.ly/D5LR6

Figure 11-6. MLflow Model Registry

In addition to using the MLflow UI to manage your models, you can also manage
them programmatically. For example, once you have registered your production
model, it has a consistent URI that you can use to retrieve the latest version:

Retrieve latest production model
model_production_uri = f"models:/{model_name}/production"
model_production = mlflow.spark.load_model(model_production_uri)

Streaming
Instead of waiting for an hourly or nightly job to process your data and generate pre‐
dictions, Structured Streaming can continuously perform inference on incoming
data. While this approach is more costly than a batch solution as you have to continu‐
ally pay for compute time (and get lower throughput), you get the added benefit of
generating predictions more frequently so you can act on them sooner. Streaming
solutions in general are more complicated to maintain and monitor than batch solu‐
tions, but they offer lower latency.

With Spark it’s very easy to convert your batch predictions to streaming predictions,
and practically all of the code is the same. The only difference is that when you read
in the data, you need to use spark.readStream() rather than spark.read() and
change the source of the data. In the following example we are going to simulate
reading in streaming data by streaming in a directory of Parquet files. You’ll notice
that we are specifying a schema even though we are working with Parquet files. This is
because we need to define the schema a priori when working with streaming data. In
this example, we will use the random forest model trained on our Airbnb data set
from the previous chapter to perform these streaming predictions. We will load in the
saved model using MLflow. We have partitioned the source file into one hundred
small Parquet files so you can see the output changing at every trigger interval:

In Python
Load saved model with MLflow
pipelineModel = mlflow.spark.load_model(f"runs:/{run_id}/model")

Model Deployment Options with MLlib | 333

Set up simulated streaming data
repartitionedPath = "/databricks-datasets/learning-spark-v2/sf-airbnb/
 sf-airbnb-clean-100p.parquet"
schema = spark.read.parquet(repartitionedPath).schema

streamingData = (spark
 .readStream
 .schema(schema) # Can set the schema this way
 .option("maxFilesPerTrigger", 1)
 .parquet(repartitionedPath))

Generate predictions
streamPred = pipelineModel.transform(streamingData)

After you generate these predictions, you can write them out to any target location
for retrieval later (refer to Chapter 8 for Structured Streaming tips). As you can see,
the code is virtually unchanged between the batch and streaming scenarios, making
MLlib a great solution for both. However, depending on the latency demands of your
task, MLlib may not be the best choice. With Spark there is significant overhead
involved in generating the query plan and communicating the task and results
between the driver and the worker. Thus, if you need really low-latency predictions,
you’ll need to export your model out of Spark.

Near Real-Time
If your use case requires predictions on the order of hundreds of milliseconds to sec‐
onds, you could build a prediction server that uses MLlib to generate the predictions.
While this is not an ideal use case for Spark because you are processing very small
amounts of data, you’ll get lower latency than with streaming or batch solutions.

Model Export Patterns for Real-Time Inference
There are some domains where real-time inference is required, including fraud detec‐
tion, ad recommendation, and the like. While making predictions with a small num‐
ber of records may achieve the low latency required for real-time inference, you will
need to contend with load balancing (handling many concurrent requests) as well as
geolocation in latency-critical tasks. There are popular managed solutions, such as
AWS SageMaker and Azure ML, that provide low-latency model serving solutions. In
this section we’ll show you how to export your MLlib models so they can be deployed
to those services.

One way to export your model out of Spark is to reimplement the model natively in
Python, C, etc. While it may seem simple to extract the coefficients of the model,
exporting all the feature engineering and preprocessing steps along with them (OneHo
tEncoder, VectorAssembler, etc.) quickly gets troublesome and is very error-prone.

334 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://aws.amazon.com/sagemaker
https://oreil.ly/OzEnY

There are a few open source libraries, such as MLeap and ONNX, that can help you
automatically export a supported subset of the MLlib models to remove their depend‐
ency on Spark. However, as of the time of this writing the company that developed
MLeap is no longer supporting it. Nor does MLeap yet support Scala 2.12/Spark 3.0.

ONNX (Open Neural Network Exchange), on the other hand, has become the de
facto open standard for machine learning interoperability. Some of you might recall
other ML interoperability formats, like PMML (Predictive Model Markup Language),
but those never gained quite the same traction as ONNX has now. ONNX is very
popular in the deep learning community as a tool that allows developers to easily
switch between libraries and languages, and at the time of this writing it has experi‐
mental support for MLlib.

Instead of exporting MLlib models, there are other third-party libraries that integrate
with Spark that are convenient to deploy in real-time scenarios, such as XGBoost and
H2O.ai’s Sparkling Water (whose name is derived from a combination of H2O and
Spark).

XGBoost is one of the most successful algorithms in Kaggle competitions for struc‐
tured data problems, and it’s a very popular library among data scientists. Although
XGBoost is not technically part of MLlib, the XGBoost4J-Spark library allows you to
integrate distributed XGBoost into your MLlib pipelines. A benefit of XGBoost is the
ease of deployment: after you train your MLlib pipeline, you can extract the XGBoost
model and save it as a non-Spark model for serving in Python, as demonstrated here:

// In Scala
val xgboostModel =
 xgboostPipelineModel.stages.last.asInstanceOf[XGBoostRegressionModel]
xgboostModel.nativeBooster.saveModel(nativeModelPath)

In Python
import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
bst.load_model("xgboost_native_model")

At the time of this writing, the distributed XGBoost API is only
available in Java/Scala. A full example is included in the book’s Git‐
Hub repo.

Now that you have learned about the different ways of exporting MLlib models for
use in real-time serving environments, let’s discuss how we can leverage Spark for
non-MLlib models.

Model Deployment Options with MLlib | 335

https://mleap-docs.combust.ml
https://onnx.ai
https://oreil.ly/7-iZJ
https://oreil.ly/yhKP9
https://oreil.ly/iReUA
https://www.kaggle.com
https://oreil.ly/XGg5c
https://github.com/databricks/LearningSparkV2
https://github.com/databricks/LearningSparkV2

Leveraging Spark for Non-MLlib Models
As mentioned previously, MLlib isn’t always the best solution for your machine learn‐
ing needs. It may not meet super low-latency inference requirements or have built-in
support for the algorithm you’d like to use. For these cases, you can still leverage
Spark, but not MLlib. In this section, we will discuss how you can use Spark to per‐
form distributed inference of single-node models using Pandas UDFs, perform
hyperparameter tuning, and scale feature engineering.

Pandas UDFs
While MLlib is fantastic for distributed training of models, you are not limited to just
using MLlib for making batch or streaming predictions with Spark—you can create
custom functions to apply your pretrained models at scale, known as user-defined
functions (UDFs, covered in Chapter 5). A common use case is to build a scikit-learn
or TensorFlow model on a single machine, perhaps on a subset of your data, but per‐
form distributed inference on the entire data set using Spark.

If you define your own UDF to apply a model to each record of your DataFrame in
Python, opt for pandas UDFs for optimized serialization and deserialization, as dis‐
cussed in Chapter 5. However, if your model is very large, then there is high overhead
for the Pandas UDF to repeatedly load the same model for every batch in the same
Python worker process. In Spark 3.0, Pandas UDFs can accept an iterator of pan
das.Series or pandas.DataFrame so that you can load the model only once instead
of loading it for every series in the iterator. For more details on what’s new in Apache
Spark 3.0 with Pandas UDFs, see Chapter 12.

If the workers cached the model weights after loading it for the first
time, subsequent calls of the same UDF with the same model load‐
ing will become significantly faster.

In the following example, we will use mapInPandas(), introduced in Spark 3.0, to
apply a scikit-learn model to our Airbnb data set. mapInPandas() takes an iterator
of pandas.DataFrame as input, and outputs another iterator of pandas.DataFrame. It’s
flexible and easy to use if your model requires all of your columns as input, but it
requires serialization/deserialization of the whole DataFrame (as it is passed to its
input). You can control the size of each pandas.DataFrame with the spark.sql.execu
tion.arrow.maxRecordsPerBatch config. A full copy of the code to generate the
model is available in this book’s GitHub repo, but here we will just focus on loading
the saved scikit-learn model from MLflow and applying it to our Spark
DataFrame:

336 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://oreil.ly/ww2_S
https://github.com/databricks/LearningSparkV2

In Python
import mlflow.sklearn
import pandas as pd

def predict(iterator):
 model_path = f"runs:/{run_id}/random-forest-model"
 model = mlflow.sklearn.load_model(model_path) # Load model
 for features in iterator:
 yield pd.DataFrame(model.predict(features))

df.mapInPandas(predict, "prediction double").show(3)

+-----------------+
| prediction|
+-----------------+
| 90.4355866254844|
|255.3459534312323|
| 499.625544914651|
+-----------------+

In addition to applying models at scale using a Pandas UDF, you can also use them to
parallelize the process of building many models. For example, you might want to
build a model for each IoT device type to predict time to failure. You can use
pyspark.sql.GroupedData.applyInPandas() (introduced in Spark 3.0) for this task.
The function takes a pandas.DataFrame and returns another pandas.DataFrame. The
book’s GitHub repo contains a full example of the code to build a model per IoT
device type and track the individual models with MLflow; just a snippet is included
here for brevity:

In Python
df.groupBy("device_id").applyInPandas(build_model, schema=trainReturnSchema)

The groupBy() will cause a full shuffle of your data set, and you need to ensure
that your model and the data for each group can fit on a single machine. Some
of you might be familiar with pyspark.sql.GroupedData.apply() (e.g.,
df.groupBy("device_id").apply(build_model)), but that API will be deprecated in
future releases of Spark in favor of pyspark.sql.GroupedData.applyInPandas().

Now that you have seen how to apply UDFs to perform distributed inference and
parallelize model building, let’s look at how to use Spark for distributed hyperpara‐
meter tuning.

Spark for Distributed Hyperparameter Tuning
Even if you do not intend to do distributed inference or do not need MLlib’s dis‐
tributed training capabilities, you can still leverage Spark for distributed hyperpara‐
meter tuning. This section will cover two open source libraries in particular: Joblib
and Hyperopt.

Leveraging Spark for Non-MLlib Models | 337

Joblib
According to its documentation, Joblib is “a set of tools to provide lightweight pipe‐
lining in Python.” It has a Spark backend to distribute tasks on a Spark cluster. Joblib
can be used for hyperparameter tuning as it automatically broadcasts a copy of your
data to all of your workers, which then create their own models with different hyper‐
parameters on their copies of the data. This allows you to train and evaluate multiple
models in parallel. You still have the fundamental limitation that a single model and
all the data have to fit on a single machine, but you can trivially parallelize the hyper‐
parameter search, as shown in Figure 11-7.

Figure 11-7. Distributed hyperparameter search

To use Joblib, install it via pip install joblibspark. Ensure you are using scikit-
learn version 0.21 or later and pyspark version 2.4.4 or later. An example of how to
do distributed cross-validation is shown here, and the same approach will work for
distributed hyperparameter tuning as well:

In Python
from sklearn.utils import parallel_backend
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
import pandas as pd
from joblibspark import register_spark

register_spark() # Register Spark backend

df = pd.read_csv("/dbfs/databricks-datasets/learning-spark-v2/sf-airbnb/
 sf-airbnb-numeric.csv")
X_train, X_test, y_train, y_test = train_test_split(df.drop(["price"], axis=1),
 df[["price"]].values.ravel(), random_state=42)

rf = RandomForestRegressor(random_state=42)
param_grid = {"max_depth": [2, 5, 10], "n_estimators": [20, 50, 100]}

338 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://github.com/joblib/joblib

gscv = GridSearchCV(rf, param_grid, cv=3)

with parallel_backend("spark", n_jobs=3):
 gscv.fit(X_train, y_train)

print(gscv.cv_results_)

See the scikit-learn GridSearchCV documentation for an explanation of the
parameters returned from the cross-validator.

Hyperopt
Hyperopt is a Python library for “serial and parallel optimization over awkward
search spaces, which may include real-valued, discrete, and conditional dimensions.”
You can install it via pip install hyperopt. There are two main ways to scale
Hyperopt with Apache Spark:

• Using single-machine Hyperopt with a distributed training algorithm (e.g.,
MLlib)

• Using distributed Hyperopt with single-machine training algorithms with the
SparkTrials class

For the former case, there is nothing special you need to configure to use MLlib with
Hyperopt versus any other library. So, let’s take a look at the latter case: distributed
Hyperopt with single-node models. Unfortunately, you can’t combine distributed
hyperparameter evaluation with distributed training models at the time of this writ‐
ing. The full code example for parallelizing the hyperparameter search for a Keras
model can be found in the book’s GitHub repo; just a snippet is included here to illus‐
trate the key components of Hyperopt:

In Python
import hyperopt

best_hyperparameters = hyperopt.fmin(
 fn = training_function,
 space = search_space,
 algo = hyperopt.tpe.suggest,
 max_evals = 64,
 trials = hyperopt.SparkTrials(parallelism=4))

fmin() generates new hyperparameter configurations to use for your training_func
tion and passes them to SparkTrials. SparkTrials runs batches of these training
tasks in parallel as a single-task Spark job on each Spark executor. When the Spark
task is done, it returns the results and the corresponding loss to the driver. Hyperopt
uses these new results to compute better hyperparameter configurations for future
tasks. This allows for massive scale-out of hyperparameter tuning. MLflow also

Leveraging Spark for Non-MLlib Models | 339

https://oreil.ly/zjuSD
https://oreil.ly/N9TVh
https://oreil.ly/D07fV
https://oreil.ly/D07fV
https://oreil.ly/XbHSG
https://github.com/databricks/LearningSparkV2

integrates with Hyperopt, so you can track the results of all the models you’ve trained
as part of your hyperparameter tuning.

An important parameter for SparkTrials is parallelism. This determines the maxi‐
mum number of trials to evaluate concurrently. If parallelism=1, then you are train‐
ing each model sequentially, but you might get better models by making full use of
adaptive algorithms. If you set parallelism=max_evals (the total number of models
to train), then you are just doing a random search. Any number between 1 and
max_evals allows you to have a trade-off between scalability and adaptiveness. By
default, parallelism is set to the number of Spark executors. You can also specify a
timeout to limit the maximum number of seconds that fmin() is allowed to take.

Even if MLlib isn’t suitable for your problem, hopefully you can see the value of using
Spark in any of your machine learning tasks.

Koalas
Pandas is a very popular data analysis and manipulation library in Python, but it is
limited to running on a single machine. Koalas is an open source library that imple‐
ments the Pandas DataFrame API on top of Apache Spark, easing the transition from
Pandas to Spark. You can install it with pip install koalas, and then simply replace
any pd (Pandas) logic in your code with ks (Koalas). This way, you can scale up your
analyses with Pandas without needing to entirely rewrite your codebase in PySpark.
Here is an example of how to change your Pandas code to Koalas (you’ll need to have
PySpark already installed):

In pandas
import pandas as pd
pdf = pd.read_csv(csv_path, header=0, sep=";", quotechar='"')
pdf["duration_new"] = pdf["duration"] + 100

In koalas
import databricks.koalas as ks
kdf = ks.read_csv(file_path, header=0, sep=";", quotechar='"')
kdf["duration_new"] = kdf["duration"] + 100

While Koalas aims to implement all Pandas features eventually, not all of them are
implemented yet. If there is functionality that you need that Koalas does not provide,
you can always switch to using the Spark APIs by calling kdf.to_spark(). Alterna‐
tively, you can bring the data to the driver by calling kdf.to_pandas() and use the
Pandas API (be careful the data set isn’t too large or you will crash the driver!).

340 | Chapter 11: Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark

https://oreil.ly/Z9rcQ
https://github.com/databricks/koalas

Summary
In this chapter, we covered a variety of best practices for managing and deploying
machine learning pipelines. You saw how MLflow can help you track and reproduce
experiments and package your code and its dependencies to deploy elsewhere. We
also discussed the main deployment options—batch, streaming, and real-time—and
their associated trade-offs. MLlib is a fantastic solution for large-scale model training
and batch/streaming use cases, but it won’t beat a single-node model for real-time
inference on small data sets. Your deployment requirements directly impact the types
of models and frameworks that you can use, and it is critical to discuss these require‐
ments before you begin your model building process.

In the next chapter, we will highlight a handful of key new features in Spark 3.0 and
how you can incorporate them into your Spark workloads.

Summary | 341

CHAPTER 12

Epilogue: Apache Spark 3.0

At the time we were writing this book, Apache Spark 3.0 had not yet been officially
released; it was still under development, and we got to work with Spark 3.0.0-
preview2. All the code samples in this book have been tested against Spark 3.0.0-
preview2, and they should work no differently with the official Spark 3.0 release.
Whenever possible in the chapters, where relevant, we mentioned when features were
new additions or behaviors in Spark 3.0. In this chapter, we survey the changes.

The bug fixes and feature enhancements are numerous, so for brevity, we highlight
just a selection of the notable changes and features pertaining to Spark components.
Some of the new features are, under the hood, advanced and beyond the scope of this
book, but we mention them here so you can explore them when the release is gener‐
ally available.

Spark Core and Spark SQL
Let’s first consider what’s new under the covers. A number of changes have been
introduced in Spark Core and the Spark SQL engine to help speed up queries. One
way to expedite queries is to read less data using dynamic partition pruning. Another
is to adapt and optimize query plans during execution.

Dynamic Partition Pruning
The idea behind dynamic partition pruning (DPP) is to skip over the data you don’t
need in a query’s results. The typical scenario where DPP is optimal is when you are
joining two tables: a fact table (partitioned over multiple columns) and a dimension
table (nonpartitioned), as shown in Figure 12-1. Normally, the filter is on the nonpar‐
titioned side of the table (Date, in our case). For example, consider this common
query over two tables, Sales and Date:

343

https://oreil.ly/fizdc

-- In SQL
SELECT * FROM Sales JOIN ON Sales.date = Date.date

Figure 12-1. Dynamic filter is injected from the dimension table into the fact table

The key optimization technique in DPP is to take the result of the filter from the
dimension table and inject it into the fact table as part of the scan operation to limit
the data read, as shown in Figure 12-1.

Consider a case where the dimension table is smaller than the fact table and we per‐
form a join, as shown in Figure 12-2. In this case, Spark most likely will do a broad‐
cast join (discussed in Chapter 7). During this join, Spark will conduct the following
steps to minimize the amount of data scanned from the larger fact table:

1. On the dimension side of the join, Spark will build a hash table from the dimen‐
sion table, also known as the build relation, as part of this filter query.

2. Spark will plug the result of this query into the hash table and assign it to a
broadcast variable, which is distributed to all executors involved in this join
operation.

3. On each executor, Spark will probe the broadcasted hash table to determine what
corresponding rows to read from the fact table.

4. Finally, Spark will inject this filter dynamically into the file scan operation of the
fact table and reuse the results from the broadcast variable. This way, as part of
the file scan operation on the fact table, only the partitions that match the filter
are scanned and only the data needed is read.

344 | Chapter 12: Epilogue: Apache Spark 3.0

Figure 12-2. Spark injects a dimension table filter into the fact table during a broadcast
join

Enabled by default so that you don’t have to explicitly configure it, all this happens
dynamically when you perform joins between two tables. With the DPP optimization,
Spark 3.0 can work much better with star-schema queries.

Adaptive Query Execution
Another way Spark 3.0 optimizes query performance is by adapting its physical exe‐
cution plan at runtime. Adaptive Query Execution (AQE) reoptimizes and adjusts
query plans based on runtime statistics collected in the process of query execution. It
attempts to to do the following at runtime:

• Reduce the number of reducers in the shuffle stage by decreasing the number of
shuffle partitions.

• Optimize the physical execution plan of the query, for example by converting a
SortMergeJoin into a BroadcastHashJoin where appropriate.

• Handle data skew during a join.

All these adaptive measures take place during the execution of the plan at runtime, as
shown in Figure 12-3. To use AQE in Spark 3.0, set the configuration
spark.sql.adaptive.enabled to true.

Spark Core and Spark SQL | 345

https://oreil.ly/mO8Ua

Figure 12-3. AQE reexamines and reoptimizes the execution plan at runtime

The AQE framework
Spark operations in a query are pipelined and executed in parallel processes, but a
shuffle or broadcast exchange breaks this pipeline, because the output of one stage is
needed as input to the next stage (see “Step 3: Understanding Spark Application Con‐
cepts” on page 25 in Chapter 2). These breaking points are called materialization
points in a query stage, and they present an opportunity to reoptimize and reexamine
the query, as illustrated in Figure 12-4.

346 | Chapter 12: Epilogue: Apache Spark 3.0

Figure 12-4. A query plan reoptimized in the AQE framework

Spark Core and Spark SQL | 347

Here are the conceptual steps the AQE framework iterates over, as depicted in this
figure:

1. All the leaf nodes, such as scan operations, of each stage are executed.
2. Once the materialization point finishes executing, it’s marked as complete, and all

the relevant statistics garnered during execution are updated in its logical plan.
3. Based on these statistics, such as number of partitions read, bytes of data read,

etc., the framework runs the Catalyst optimizer again to understand whether it
can:
a. Coalesce the number of partitions to reduce the number of reducers to read

shuffle data.
b. Replace a sort merge join, based on the size of tables read, with a broadcast

join.
c. Try to remedy a skew join.
d. Create a new optimized logical plan, followed by a new optimized physical

plan.

This process is repeated until all the stages of the query plan are executed.

In short, this reoptimization is done dynamically, as shown in Figure 12-3, and the
objective is to dynamically coalesce the shuffle partitions, decrease the number of
reducers needed to read the shuffle output data, switch join strategies if appropriate,
and remedy any skew joins.

Two Spark SQL configurations dictate how AQE will reduce the number of reducers:

• spark.sql.adaptive.coalescePartitions.enabled (set to true)
• spark.sql.adaptive.skewJoin.enabled (set to true)

At the time of writing, the Spark 3.0 community blog, documentation, and examples
had not been published publicly, but by the time of publication they should have
been. These resources will enable you to get more detailed information if you wish to
see how these features work under the hood—including on how you can inject SQL
join hints, discussed next.

SQL Join Hints
Adding to the existing BROADCAST hints for joins, Spark 3.0 adds join hints for all
Spark join strategies (see “A Family of Spark Joins” on page 187 in Chapter 7). Exam‐
ples are provided here for each type of join.

348 | Chapter 12: Epilogue: Apache Spark 3.0

https://oreil.ly/GqlqH

Shuffle sort merge join (SMJ)

With these new hints, you can suggest to Spark that it perform a SortMergeJoin
when joining tables a and b or customers and orders, as shown in the following
examples. You can add one or more hints to a SELECT statement inside /*+ ... */
comment blocks:

SELECT /*+ MERGE(a, b) */ id FROM a JOIN b ON a.key = b.key
SELECT /*+ MERGE(customers, orders) */ * FROM customers, orders WHERE
 orders.custId = customers.custId

Broadcast hash join (BHJ)
Similarly, for a broadcast hash join, you can provide a hint to Spark that you prefer a
broadcast join. For example, here we broadcast table a to join with table b and table
customers to join with table orders:

SELECT /*+ BROADCAST(a) */ id FROM a JOIN b ON a.key = b.key
SELECT /*+ BROADCAST(customers) */ * FROM customers, orders WHERE
 orders.custId = customers.custId

Shuffle hash join (SHJ)
You can offer hints in a similar way to perform shuffle hash joins, though this is less
commonly encountered than the previous two supported join strategies:

SELECT /*+ SHUFFLE_HASH(a, b) */ id FROM a JOIN b ON a.key = b.key
SELECT /*+ SHUFFLE_HASH(customers, orders) */ * FROM customers, orders WHERE
 orders.custId = customers.custId

Shuffle-and-replicate nested loop join (SNLJ)
Finally, the shuffle-and-replicate nested loop join adheres to a similar form and
syntax:

SELECT /*+ SHUFFLE_REPLICATE_NL(a, b) */ id FROM a JOIN b

Catalog Plugin API and DataSourceV2
Not to be confined only to the Hive metastore and catalog, Spark 3.0’s experimental
DataSourceV2 API extends the Spark ecosystem and affords developers three core
capabilities. Specifically, it:

• Enables plugging in an external data source for catalog and table management
• Supports predicate pushdown to additional data sources with supported file for‐

mats like ORC, Parquet, Kafka, Cassandra, Delta Lake, and Apache Iceberg.
• Provides unified APIs for streaming and batch processing of data sources for

sinks and sources

Spark Core and Spark SQL | 349

Aimed at developers who want to extend Spark’s ability to use external sources and
sinks, the Catalog API provides both SQL and programmatic APIs to create, alter,
load, and drop tables from the specified pluggable catalog. The catalog provides a
hierarchical abstraction of functionalities and operations performed at different lev‐
els, as shown in Figure 12-5.

Figure 12-5. Catalog plugin API’s hierarchical level of functionality

The initial interaction between Spark and a specific connector is to resolve a relation
to its actual Table object. Catalog defines how to look up tables in this connector.
Additionally, Catalog can define how to modify its own metadata, thus enabling
operations like CREATE TABLE, ALTER TABLE, etc.

For example, in SQL you can now issue commands to create namespaces for your cat‐
alog. To use a pluggable catalog, enable the following configs in your spark-
defaults.conf file:

spark.sql.catalog.ndb_catalog com.ndb.ConnectorImpl # connector implementation
spark.sql.catalog.ndb_catalog.option1 value1
spark.sql.catalog.ndb_catalog.option2 value2

Here, the connector to the data source catalog has two options: option1->value1 and
option2->value2. Once they’ve been defined, application users in Spark or SQL can
use the DataFrameReader and DataFrameWriter API methods or Spark SQL com‐
mands with these defined options as methods for data source manipulation. For
example:

-- In SQL
SHOW TABLES ndb_catalog;
CREATE TABLE ndb_catalog.table_1;
SELECT * from ndb_catalog.table_1;
ALTER TABLE ndb_catalog.table_1

// In Scala
df.writeTo("ndb_catalog.table_1")
val dfNBD = spark.read.table("ndb_catalog.table_1")
 .option("option1", "value1")
 .option("option2", "value2")

350 | Chapter 12: Epilogue: Apache Spark 3.0

https://oreil.ly/TrscV
https://oreil.ly/TrscV

While these catalog plugin APIs extend Spark’s ability to utilize external data sources
as sinks and sources, they are still experimental and should not be used in produc‐
tion. A detailed guide to their use is beyond the scope of this book, but we encourage
you to check the release documentation for additional information if you want to
write a custom connector to an external data source as a catalog to manage your
external tables and their associated metadata.

The preceding code snippets are examples of what your code may
look like after you have defined and implemented your catalog
connectors and populated them with data.

Accelerator-Aware Scheduler
Project Hydrogen, a community initiative to bring AI and big data together, has three
major goals: implementing barrier execution mode, accelerator-aware scheduling,
and optimized data exchange. A basic implementation of barrier execution mode was
introduced in Apache Spark 2.4.0. In Spark 3.0, a basic scheduler has been imple‐
mented to take advantage of hardware accelerators such as GPUs on target platforms
where Spark is deployed in standalone mode, YARN, or Kubernetes.

For Spark to take advantage of these GPUs in an organized way for specialized work‐
loads that use them, you have to specify the hardware resources available via configs.
Your application can then discover them with the help of a discovery script. Enabling
GPU use is a three-step process in your Spark application:

1. Write a discovery script that discovers the addresses of the underlying GPUs
available on each Spark executor. This script is set in the following Spark
configuration:

spark.worker.resource.gpu.discoveryScript=/path/to/script.sh

2. Set up configuration for your Spark executors to use these discovered GPUs:
spark.executor.resource.gpu.amount=2
spark.task.resource.gpu.amount=1

3. Write RDD code to leverage these GPUs for your task:
import org.apache.spark.BarrierTaskContext
val rdd = ...
rdd.barrier.mapPartitions { it =>
 val context = BarrierTaskContext.getcontext.barrier()
 val gpus = context.resources().get("gpu").get.addresses
 // launch external process that leverages GPU
 launchProcess(gpus)
}

Spark Core and Spark SQL | 351

https://oreil.ly/Jk4rA
https://oreil.ly/RDyb1
https://oreil.ly/9TOyT

These steps are still experimental, and further development will
continue in future Spark 3.x releases to support seamless discovery
of GPU resources, both at the command line (with spark-submit)
and at the Spark task level.

Structured Streaming
To inspect how your Structured Streaming jobs fare with the ebb and flow of data
during the course of execution, the Spark 3.0 UI has a new Structured Streaming tab
alongside the other tabs we explored in Chapter 7. This tab offers two sets of statis‐
tics: aggregate information about completed streaming query jobs (Figure 12-6) and
detailed statistics about the streaming queries, including the input rate, process rate,
number of input rows, batch duration, and operation duration (Figure 12-7).

Figure 12-6. Structured Streaming tab showing aggregate statistics of a completed
streaming job

The Figure 12-7 screenshot was taken with Spark 3.0.0-preview2;
with the final release, you should see the query name and ID in the
name identifier on the UI page.

352 | Chapter 12: Epilogue: Apache Spark 3.0

Figure 12-7. Showing detailed statistics of a completed streaming job

No configuration is required; all configurations works straight out of the Spark 3.0
installation, with the following defaults:

• spark.sql.streaming.ui.enabled=true

• spark.sql.streaming.ui.retainedProgressUpdates=100

Structured Streaming | 353

https://oreil.ly/wP1QB

• spark.sql.streaming.ui.retainedQueries=100

PySpark, Pandas UDFs, and Pandas Function APIs
Spark 3.0 requires pandas version 0.23.2 or higher to employ any pandas-related
methods, such as DataFrame.toPandas() or SparkSession.createDataFrame(pan
das.DataFrame).

Furthermore, it requires PyArrow version 0.12.1 or later to use PyArrow functional‐
ity such as pandas_udf(), DataFrame.toPandas(), and SparkSession.createData
Frame(pandas.DataFrame) with the spark.sql.execution.arrow.enabled

configuration set to true. The next section will introduce new features in Pandas
UDFs.

Redesigned Pandas UDFs with Python Type Hints
The Pandas UDFs in Spark 3.0 were redesigned by leveraging Python type hints. This
enables you to naturally express UDFs without requiring the evaluation type. Pandas
UDFs are now more “Pythonic” and can themselves define what the UDF is supposed
to input and output, rather than you specifying it via, for example, @pan

das_udf("long", PandasUDFType.SCALAR) as you did in Spark 2.4.

Here’s an example:

Pandas UDFs in Spark 3.0
import pandas as pd
from pyspark.sql.functions import pandas_udf

@pandas_udf("long")
def pandas_plus_one(v: pd.Series) -> pd.Series:
 return v + 1

This new format provides several benefits, such as easier static analysis. You can apply
the new UDFs in the same way as before:

354 | Chapter 12: Epilogue: Apache Spark 3.0

https://oreil.ly/tAEA9

df = spark.range(3)
df.withColumn("plus_one", pandas_plus_one("id")).show()

+---+--------+
| id|plus_one|
+---+--------+
0	1
1	2
2	3
+---+--------+

Iterator Support in Pandas UDFs
Pandas UDFs are very commonly used to load a model and perform distributed
inference for single-node machine learning and deep learning models. However, if a
model is very large, then there is high overhead for the Pandas UDF to repeatedly
load the same model for every batch in the same Python worker process.

In Spark 3.0, Pandas UDFs can accept an iterator of pandas.Series or pandas.Data
Frame, as shown here:

from typing import Iterator

@pandas_udf('long')
def pandas_plus_one(iterator: Iterator[pd.Series]) -> Iterator[pd.Series]:
 return map(lambda s: s + 1, iterator)

df.withColumn("plus_one", pandas_plus_one("id")).show()

+---+--------+
| id|plus_one|
+---+--------+
0	1
1	2
2	3
+---+--------+

With this support, you can load the model only once instead of loading it for every
series in the iterator. The following pseudocode illustrates how to do this:

@pandas_udf(...)
def predict(iterator):
 model = ... # load model
 for features in iterator:
 yield model.predict(features)

PySpark, Pandas UDFs, and Pandas Function APIs | 355

https://oreil.ly/FboVn

New Pandas Function APIs
Spark 3.0 introduces a few new types of Pandas UDFs that are useful when you want
to apply a function against an entire DataFrame instead of column-wise, such as
mapInPandas(), introduced in Chapter 11. These take an iterator of pandas.Data
Frame as input and output another iterator of pandas.DataFrame:

def pandas_filter(
 iterator: Iterator[pd.DataFrame]) -> Iterator[pd.DataFrame]:
 for pdf in iterator:
 yield pdf[pdf.id == 1]

df.mapInPandas(pandas_filter, schema=df.schema).show()

+---+
| id|
+---+
| 1|
+---+

You can control the size of the pandas.DataFrame by specifying it in the
spark.sql.execution.arrow.maxRecordsPerBatch configuration. Note that the
input size and output size do not have to match, unlike with most Pandas UDFs.

All the data of a cogroup will be loaded into memory, which means
if there is data skew or certain groups are too big to fit in memory
you could run into OOM issues.

Spark 3.0 also introduces cogrouped map Pandas UDFs. The applyInPandas() func‐
tion takes two pandas.DataFrames that share a common key and applies a function to
each cogroup. The returned pandas.DataFrames are then combined as a single Data‐
Frame. As with mapInPandas(), there is no restriction on the length of the returned
pandas.DataFrame. Here’s an example:

df1 = spark.createDataFrame(
 [(1201, 1, 1.0), (1201, 2, 2.0), (1202, 1, 3.0), (1202, 2, 4.0)],
 ("time", "id", "v1"))
df2 = spark.createDataFrame(
 [(1201, 1, "x"), (1201, 2, "y")], ("time", "id", "v2"))

def asof_join(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
 return pd.merge_asof(left, right, on="time", by="id")

df1.groupby("id").cogroup(
 df2.groupby("id")
).applyInPandas(asof_join, "time int, id int, v1 double, v2 string").show()

356 | Chapter 12: Epilogue: Apache Spark 3.0

+----+---+---+---+
|time| id| v1| v2|
+----+---+---+---+
1201	1	1.0	x
1202	1	3.0	x
1201	2	2.0	y
1202	2	4.0	y
+----+---+---+---+

Changed Functionality
Listing all the functionality changes in Spark 3.0 would transform this book into a
brick several inches thick. So, in the interest of brevity, we will mention a few notable
ones here, and leave you to consult the release notes for Spark 3.0 for full details and
all the nuances as soon as they are available.

Languages Supported and Deprecated
Spark 3.0 supports Python 3 and JDK 11, and Scala version 2.12 is required. All
Python versions earlier than 3.6 and Java 8 are deprecated. If you use these depre‐
cated versions you will get warning messages.

Changes to the DataFrame and Dataset APIs
In previous versions of Spark, the Dataset and DataFrame APs had deprecated the
unionAll() method. In Spark 3.0 this has been reversed, and unionAll() is now an
alias to the union() method.

Also, earlier versions of Spark’s Dataset.groupByKey() resulted in a grouped Dataset
with the key spuriously named as value when the key was a non-struct type (int,
string, array, etc.). As such, aggregation results from ds.groupByKey().count() in
the query when displayed looked, counterintuitively, like (value, count). This has
been rectified to result in (key, count), which is more intuitive. For example:

// In Scala
val ds = spark.createDataset(Seq(20, 3, 3, 2, 4, 8, 1, 1, 3))
ds.show(5)

+-----+
|value|
+-----+
| 20|
| 3|
| 3|
| 2|
| 4|
+-----+

Changed Functionality | 357

ds.groupByKey(k=> k).count.show(5)

+---+--------+
|key|count(1)|
+---+--------+
1	2
3	3
20	1
4	1
8	1
+---+--------+
only showing top 5 rows

However, you can preserve the old format if you prefer by setting spark.sql.leg
acy.dataset.nameNonStructGroupingKeyAsValue to true.

DataFrame and SQL Explain Commands
For better readability and formatting, Spark 3.0 introduces the Data

Frame.explain(FORMAT_MODE) capability to display different views of the plans the
Catalyst optimizer generates. The FORMAT_MODE options include "simple" (the
default), "extended", "cost", "codegen", and "formatted". Here’s a simple
illustration:

// In Scala
val strings = spark
 .read.text("/databricks-datasets/learning-spark-v2/SPARK_README.md")
val filtered = strings.filter($"value".contains("Spark"))
filtered.count()

In Python
strings = spark
 .read.text("/databricks-datasets/learning-spark-v2/SPARK_README.md")
filtered = strings.filter(strings.value.contains("Spark"))
filtered.count()

// In Scala
filtered.explain("simple")

In Python
filtered.explain(mode="simple")

== Physical Plan ==
*(1) Project [value#72]
+- *(1) Filter (isnotnull(value#72) AND Contains(value#72, Spark))
 +- FileScan text [value#72] Batched: false, DataFilters: [isnotnull(value#72),
Contains(value#72, Spark)], Format: Text, Location:
InMemoryFileIndex[dbfs:/databricks-datasets/learning-spark-v2/SPARK_README.md],
PartitionFilters: [], PushedFilters: [IsNotNull(value),
StringContains(value,Spark)], ReadSchema: struct<value:string>

// In Scala
filtered.explain("formatted")

358 | Chapter 12: Epilogue: Apache Spark 3.0

In Python
filtered.explain(mode="formatted")

== Physical Plan ==
* Project (3)
+- * Filter (2)
 +- Scan text (1)

(1) Scan text
Output [1]: [value#72]
Batched: false
Location: InMemoryFileIndex [dbfs:/databricks-datasets/learning-spark-v2/...
PushedFilters: [IsNotNull(value), StringContains(value,Spark)]
ReadSchema: struct<value:string>

(2) Filter [codegen id : 1]
Input [1]: [value#72]
Condition : (isnotnull(value#72) AND Contains(value#72, Spark))

(3) Project [codegen id : 1]
Output [1]: [value#72]
Input [1]: [value#72]

-- In SQL
EXPLAIN FORMATTED
SELECT *
FROM tmp_spark_readme
WHERE value like "%Spark%"

== Physical Plan ==
* Project (3)
+- * Filter (2)
 +- Scan text (1)

(1) Scan text
Output [1]: [value#2016]
Batched: false
Location: InMemoryFileIndex [dbfs:/databricks-datasets/
learning-spark-v2/SPARK_README.md]
PushedFilters: [IsNotNull(value), StringContains(value,Spark)]
ReadSchema: struct<value:string>

(2) Filter [codegen id : 1]
Input [1]: [value#2016]
Condition : (isnotnull(value#2016) AND Contains(value#2016, Spark))

(3) Project [codegen id : 1]
Output [1]: [value#2016]
Input [1]: [value#2016]

To see the rest of the format modes in action, you can try the notebook in the book’s
GitHub repo. Also check out the migration guides from Spark 2.x to Spark 3.0.

Changed Functionality | 359

https://github.com/databricks/LearningSparkV2
https://spark.apache.org/docs/latest/migration-guide.html

Summary
This chapter provided a cursory highlight of new features in Spark 3.0. We took the
liberty of mentioning a few advanced features that are worthy of note. They operate
under the hood and not at the API level. In particular, we took a look at dynamic par‐
tition pruning (DPP) and adaptive query execution (AQE), two optimizations that
enhance Spark’s performance at execution time. We also explored how the experi‐
mental Catalog API extends the Spark ecosystem to custom data stores for sources
and sinks for both batch and streaming data, and looked at the new scheduler in
Spark 3.0 that enables it to take advantage of GPUs in executors.

Complementing our discussion of the Spark UI in Chapter 7, we also showed you the
new Structured Streaming tab, providing accumulated statistics on streaming jobs,
additional visualizations, and detailed metrics on each query.

Python versions below 3.6 are deprecated in Spark 3.0, and Pandas UDFs have been
redesigned to support Python type hints and iterators as arguments. There are Pandas
UDFs that enable transforming an entire DataFrame, as well as combining two
cogrouped DataFrames into a new DataFrame.

For better readability of query plans, DataFrame.explain(FORMAT_MODE) and
EXPLAIN FORMAT_MODE in SQL display different levels and details of logical and physi‐
cal plans. Additionally, SQL commands can now take join hints for Spark’s entire sup‐
ported family of joins.

While we were unable to enumerate all the changes in the latest version of Spark in
this short chapter, we urge that you explore the release notes when Spark 3.0 is
released to find out more. Also, for a quick summary of the user-facing changes and
details on how to migrate to Spark 3.0, we encourage you to check out the migration
guides.

As a reminder, all the code in this book has been tested on Spark 3.0.0-preview2 and
should work with Spark 3.0 when it is officially released. We hope you’ve enjoyed
reading this book and learned from this journey with us. We thank you for your
attention!

360 | Chapter 12: Epilogue: Apache Spark 3.0

Index

A
Accelerator-Aware Scheduler, 351
ACM (Association for Computing Machinery),

6
actions, 28-30, 61
adding columns, 63, 152
agg(), 187
aggregate(), 162
aggregations, 66, 239-246
allowUnquotedFieldNames property, 101
Amazon S3, 89
AMPLab, 3
Analysis phase (Spark SQL), 81
analytic functions, 149
Apache Arrow format, 115
Apache Cassandra, 89, 137, 231
Apache Hive, 89, 113-155
Apache Hudi, 272
Apache Iceberg, 272
Apache Kafka

about, 8, 15
reading from, 228
Structured Streaming and, 228-230
writing to, 229

Apache Mesos, 12, 177
Apache Spark Meetup groups, 16
Append mode (Structured Streaming), 212,

215, 245
applications, Spark

about, 26
concepts of, 25-28
debugging, 204
driver and executors, 10, 12
driver programs, 10

optimizing and tuning, 173-205
using Spark SQL in, 84-89

approxQuantile() method, 68
approx_count_distinct(), 239
AQE (Adaptive Query Execution), 345-348
arbitrary stateful computations, 253-261
array type functions, 139-141
arrays_overlap() function, 139
array_distinct() function, 139
array_except() function, 139
array_intersect() function, 139
array_join() function, 139
array_max() function, 139
array_min() function, 139
array_position() function, 139
array_remove() function, 139
array_repeat() function, 139
array_sort() function, 139
array_union() function, 139
array_zip() function, 139
artifacts, 326
ASF (Apache Software Foundation), 2
AST (abstract syntax tree), 81
atomicity, of data lakes, 270
auditing data changes with operation history,

282
avg() method, 67
avro Schema property, 106
Avro, as a data source for DataFrames and SQL

tables, 104
AWS SageMaker, 334
Azure Cosmos DB, 134
Azure ML, 334

361

B
bagging, 313
barrier execution mode, 351
batch deployment, 332
Beeline, querying with, 119
BHJ (broadcast hash join), 188, 349
big data, 1
Big table, 1
bin directory, 21, 21
binary files, as a data source for DataFrames

and SQL tables, 110
bootstrapping samples, 313
broadcast variables, 188, 344
bucketBy() method, 96
built-in data sources, 83-112, 94
built-in functions, 139-141, 239
bytecode, 7, 23, 25

C
cache(), 183-187
caching, 93, 183-187
cardinality() function, 139
case class, 71, 158
CASE statement, 152
Cassandra, 89, 137, 231
Catalog API, 93, 349-351
Catalyst optimizer, xvi, 16, 77-82, 170
CBO (cost-based optimizer), 81
CDC (change-data-capture), 271
checkpointing, 217, 262
classification, 286-287, 292, 304
clause conditions, 281
client mode, 12
close() method, 233
cluster managers, 10, 12, 176, 178
cluster resource provisioning, 262
clustering, 286, 288, 302
code examples, using, xviii
Code generation phase (Spark SQL), 81
codegen, enabling in Spark SQL, 189
cogroup(), 356
collect() method, 67
collect_list(), 138
collect_set(), 239
Column object, 54
columns

adding, 63, 152
dropping, 63, 152
in DataFrames, 54

random feature selection by, 313
renaming, 63, 153

comma-separated value files (CSV files), 102
community adoption/expansion, of Spark, 16
Complete mode (Structured Streaming), 212,

215, 245
complex data types, 49, 139-141
compression property, 101, 103, 106
compute function, 44
concat() function, 139
conf.spark-defaults.conf file, 173
configurations

setting, 173-176
used in this book, xviii
viewing, 173-176

configuring Spark, with Delta Lake, 274
consistency, of data lakes, 270
continuous applications, 15
Continuous mode (Structured Streaming), 217
Continuous Streaming model, 8
Continuous trigger mode, 219
correlation() method, 68
costs

mitigating, 170
of databases, 267
of latency, 209

count(), 29, 66, 183, 215
countDistinct(), 239
Counting M&Ms example, 35-39
covariance() method, 68
CrossValidator, 317
CSV files, as a data source for DataFrames and

SQL tables, 102
cube() function, 235
cubed() function, 116
customStateUpdateFunction(), 254

D
DAG (directed acyclic graph), 4, 27
data

accommodating changing, 279
auditing changes with operation history,

282
deduplicating, 281
diversity of formats for storage solutions,

265
governance of, as a feature of lakehouses,

271
growth in size of, 267

362 | Index

loading into Delta Lake tables, 275
transforming, 214, 279-282
updating, 280

data corruption, enforcing schema on write to
prevent, 278-279

data directory, 21
data engineering tasks, 15
data engineers, xv, 15
data evolution, 323
data ingestion, 290
data lakes, 265-284

about, 268
databases, 266-268
lakehouses, 271
limitations of, 270
optimal storage solutions, 265
reading from, 269
writing to, 269

data science tasks, 14
data scientists, xv
data sources

about, 89
built-in, 94
for DataFrames, 94-112
for SQL tables, 94-112
streaming, 226-234

Data Sources API, 94
data type

about, 48
complex, 49
structured, 49
support for diverse, as a feature of lake‐

houses, 271
databases

about, 266
limitations of, 267
reading from, 267
writing from, 267

Databricks Community Edition, xviii, 34
DataFrame API

about, 16, 47
columns, 54
common operations, 58-68
creating DataFrames, 50-54
data types, 48
example of, 68
expressions, 54
rows, 57
schemas, 50-54

structured data types, 49
DataFrame.cache(), 183
DataFrame.persist(), 184
DataFrameReader

about, 5
as a data source for DataFrames and SQL

tables, 94
using, 58-60

DataFrames, 144-155
changes to, 357
compared with Datasets, 74
converting to Datasets, 166
creating, 50-54
data sources for, 94-112
higher-order functions in, 138-144
lazy evaluation and, 29
memory management for, 167
reading Avro files into, 104
reading binary files into, 110
reading CSV files into, 102
reading data into, 93
reading image files into, 108
reading JSON files into, 100
reading ORC files into, 107
reading Parquet files into, 97
SQL explain commands, 358
streaming, 214
transformations, 222
writing into Avro files, 105
writing into CSV files, 103
writing into JSON files, 101
writing to ORC files, 108
writing to Parquet files, 99
writing to Spark SQL tables, 99

DataFrameWriter
about, 5
as a data source for DataFrames and SQL

tables, 96
using, 58-60

Dataset API
about, 16, 69
changes to, 357
creating Datasets, 71
Dataset operations, 72
example of, 74
typed objects, 69

Datasets
compared with DataFrames, 74
converting DataFrames to, 166

Index | 363

costs of using, 170
creating, 71
encoders, 168
JavaBeans for, 158
memory management for, 167
operations, 72
single API, 157-160
Spark SQL and, 157-172
working with, 160-167

DataSourceV2, 349-351
dateFormat property, 101, 103
day() function, 65
DDL (Data Definition Language) string, 51
debugging Spark, 204
decision trees, 308-313
deduplicating data, 281
delete actions, 271, 281
deleting user-related data, 280
Delta Lake

about, 273
building lakehouses with Apache Spark and,

274-283
configuring Apache Spark with, 274
loading data into tables, 275
loading data streams into tables, 277

DenseVector, 298
dense_rank() function, 151
dependencies, 44
deployment modes, 12, 330-335
deprecated languages, 357
describe() method, 68
developers, Spark and, 14-17
directories, 21
discretized streams, 9
DISK_ONLY storage level, 184
distributed data, partitions and, 12
distributed execution, 10-14
distributed hyperparameter tuning, 337-340
distributed state management, 236
dot (.) notation, 72
downloading Spark, 19-22
DPP (dynamic partition pruning), 343-345
driver, 10
driver programs, 10
drop() method, 64, 152
dropping columns, 63, 152
Dropwizard Metrics, 224
DSL (domain-specific language), 44
DStream API, 209

DStreams (discretized streams), 9
dynamic resource allocation, 177

E
ease of use, of Spark, 5
The Elements of Statistical Learning (Hastie,

Tibshirani, and Friedman), 309
element_at() function, 139, 139
encoders (Datasets), 168
encoding, one-hot, 297
end-to-end exactly-once guarantees, 221
ensemble approach, 313
Environment tab (Spark UI), 203
errors, fixing, 280
estimators, 290, 295
estimator_name.fit() method, 295
ETL (extract, transform, and load), 15
evaluating models, 302-306
evaluation order, 115
event-time timeouts, 259
event-time windows, aggregations with,

239-246
exactly-once guarantees, 221
examples file, 21
execution, order of, 323
executors, 12
Executors tab (Spark UI), 200
exists() function, 143
experiments, 325
explode() function, 138, 235
export patterns, for real-time inference, 334
expr() function, 145
expressions, in DataFrames, 54
extensibility, of Spark, 5
external data sources, 113-155

Apache Cassandra, 137
Azure Cosmos DB, 134
common DataFrames, 144-155
higher-order functions in DataFrames and

Spark SQL, 138-144
JDBC database, 129-131
MongoDB, 137
MS SQL Server, 136
MySQL, 133
PostgreSQL, 132
Snowflake, 137
Spark SQL operations, 144-155
SQL database, 129-131
Tableau, 122-129

364 | Index

F
fault tolerance, 2, 9, 15, 185, 209, 222
fault-tolerant state management, 236
file formats

about, 76
CSV files, 102
data lakes and, 269
support for diversity of, 269

files
about, 21
reading from, 226
Structured Streaming and, 226
writing to, 227

filesystems, 89, 269
filter() method, 28, 29, 61, 72, 73, 143, 157, 162,

170, 215, 235
filtering, DataFrames and, 61
fit() method, 296
fitting, 295
flatMap() method, 157, 170, 215, 235
flatMapGroupsWithState(), 253, 256, 261
flatten() function, 139
fmin(), 339
foreach() method, 216, 230, 233-234
foreachBatch() method, 216, 230, 281
format() method, 94, 96, 100
frequentItems() method, 68
Friedman, Jerome, The Elements of Statistical

Learning, 309
from_json() function, 138
functional programming, higher-order func‐

tions and, 162-167
functionality, changed, 357-359

G
garbage collection, 167, 178, 199
GDPR (General Data Protection Regulation),

280
generalization, with flatMapGroupsWithState(),

261
generic rows, 69
getter methods, 70
get_json_object() function, 138
GFS (Google File System), 1
Ghemawat, Sanjay, The Google File System, 268
global aggregations, 238
global temporary views, 92
Gobioff, Howard, The Google File System, 268
Google, 1

The Google File System (Ghemawat, Gobioff,
and Leung), 268

GraphFrames, 9
graphical user interface, 31
GraphX library, 6, 9
GridSearchCV, 339
GROUP BY statement, 138
groupBy() method, 30, 66, 73, 157, 182, 187,

244, 337
groupByKey(), 254, 256
grouped aggregate Pandas UDFs, 116
grouped aggregations, 238
grouped map Pandas UDFs, 116

H
Hadoop, 2, 268
Hadoop YARN, 12
Hastie, Trevor, The Elements of Statistical

Learning, 309
HBase, 5
HDFS (Hadoop Distributed File System), 2, 268
high-level structured APIs, 25
higher-order functions, 138-144, 162-167
Hive, 89, 113-155
Hive ORC SerDe (serialization and deserializa‐

tion) tables, 107
HiveContext object, 11
HiveServer2, 120
Hyperopt, 339
hyperparameter configurations, 317
hyperparameter tuning

about, 307
distributed, 337-340
k-fold cross-validation, 316-319
optimizing pipelines, 320-321
tree-based models, 307-316

I
id column (StreamingQuery), 224
ignoreExtension property, 106
images, as a data source for DataFrames and

SQL tables, 108
incremental execution, 234
incrementalization, 211
inferSchema property, 103
inner joins, 248-252
input and output sources

defining, 213
file formats

Index | 365

about, 76
CSV files, 102
data lakes and, 269
support for diverse workloads, 269

inputRowsPerSecond column (Streaming‐
Query), 224

installing R, 21
interactive groups, managing using timeouts,

257-261
interactive shell, 274
isolation, of data lakes, 270
iterator support, in Pandas UDFs, 355

J
Java, 55, 157-160
Java Serialization, 184
java.op.Serializable, 158
JavaBean class, 71
JavaBeans, for Datasets, 158
JDBC database, 89, 129-131
JDK (Java Development Kit), 41
Joblib, 338
jobs, 26, 27
Jobs tab (Spark UI), 198
join operations

about, 187
broadcast hash join (BHJ), 188
shuffle sort merge (SMJ), 189-197

join(), 182, 187
joins

about, 148
BHJ (broadcast hash join), 349
SHJ (shuffle hash join), 349
SMJ (shuffle sort merge join), 349
SNLJ (shuffle-and-replicate nested loop

join), 349
Spark SQL, 348

JSON (JavaScript Object Notation) files
about, 53, 100
as a data source for DataFrames and SQL

tables, 100

K
k-fold cross-validation, 316-319
Kafka Integration Guide, 229
Kaggle, 335
Karau, Holden, xv
Kay, Alan, 3
Koalas, 340

Konwinski, Andy, xv
Kryo serialization library, 168, 170, 184
Kubernetes, 12, 21
Kuo, Kevin, Mastering Spark with R, xvi, 285

L
lakehouses

Apache Hudi, 272
Apache Iceberg, 272
building with Apache Spark and Delta Lake,

274-283
Delta Lake, 273
features of , 271

lambdas, 170
languages, 357
latency, 209, 330
lazy evaluation, 28-30
leaf node, of decision trees, 308
learning, 295
Lending Club Loan Data, 274
Leung, Shun-Tak, The Google File System, 268
library versioning, 323
lineage, 29
linear regression, 294
LinearRegressionModel, 295, 306
Linux Foundation, 273
load() method, 94
loading and saving data

data streams into Delta Lake tables, 277
file formats

about, 76
CSV files, 102
data lakes and, 269
support for diversity of, 269

filesystems, 89, 269
into Delta Lake tables, 275
structured data, using Spark, 91

loading models, 306
local machine, 23
log-normally distributed, 305
Log4j.properties.template, 37
logging, 325, 327
Logical optimization phase (Spark SQL), 81
logistic regression, 287
LogisticRegressionModel, 306
lowerBound property, 130
lr.fit() method, 296
Luraschi, Javier, Mastering Spark with R, xvi,

285

366 | Index

M
machine learning (ML)

about, 286
building models using estimators, 295
creating pipelines, 296-302
creating test data sets, 291-293
creating training data sets, 291-293
data ingestion, 290
designing pipelines, 289-307
evaluating models, 302-306
exploration, 290
hyperparameter tuning, 307-321
linear regression, 294
loading models, 306
reasons for using Spark, 289
saving models, 306
supervised, 286
unsupervised, 288
with MLlib, 285-321

machine learning engineers, xv
managed stateful transformations, 237
managed tables, 89
map functions, 139
map() method, 73, 138, 157, 162, 163, 170, 215,

235
map-side-only join, 188
mapGroupsWithState(), 253, 256, 261
mapInPandas() method, 336, 356
mapPartitions(), 119
map_concat() function, 139
map_form_arrays() function, 139
map_from_entries() function, 139
Mastering Spark with R (Luraschi, Kuo, and

Ruiz), xvi, 285
Matrix object, 292
Maven, 133, 134
max() method, 67
mean() method, 239
memory management, for Datasets and Data‐

Frames, 167
MEMORY_AND_DISK storage level, 184
MEMORY_AND_DISK_SER storage level, 184
MEMORY_ONLY storage level, 184
MEMORY_ONLY_SER storage level, 184
merge(), upserting change data to tables using,

281
Mesos (see Apache Mesos)
metadata, 93, 326
metrics, 224, 326

micro-batch architecture, Spark Streaming, 208
min() method, 67
mitigating costs, 170
MLeap, 334
MLflow, 323, 324-330
MLflow Model Registry, 332
MLflow Models, 332
MLflow Projects, 330
MLflow Tracking, 325-330
MLlib library

about, xv, 6, 7
(see also machine learning (ML))

machine learning (ML) with, 285-321
model deployment options with, 330

model.transform(), 332
models

about, 326
building using estimators, 295
evaluating, 302-306
loading, 306
managing, 323-330
saving, 306
tree-based, 307-316

models component (MLflow), 324
modifications, 151-155
modularity, of Spark, 5
MongoDB, 137
month() function, 65
MR (MapReduce), 1
MS SQL Server, 136
multiline property, 101, 103
multitenant environment, 177
MySQL database, 86, 133

N
Naive Bayes algorithm, 287
narrow dependencies, 30
Netflix, 272
non-MLlib models, leveraging Spark for,

336-340
non-SQL based analytics, for databases, 268
non-time based streaming aggregations, 238
null checking, 115
numInputRows column (StreamingQuery), 224
numPartitions property, 130
NumPy, 14

O
objects, 69

Index | 367

off-Java heap memory, 168
OFF_HEAP storage level, 184
OHE (one-hot encoding), 297
OLAP (online analytical processing), 267
OLTP (online transaction processing), 267
Once mode (Structured Streaming), 217
OneHotEncoder, 298
ONNX (Open Neural Network Exchange), 334
OOM (out-of-memory) exceptions, 67
open() method, 233
openness, of storage solutions, 265
operation history, auditing data changes with,

282
optimizing Spark applications, 173-205
option() method, 94, 96, 100
optional actions, 281
ORC, as a data source for DataFrames and SQL

tables, 106
order of execution, 323
orderBy() method, 30, 66
outer joins, 252
output modes (Structured Streaming), 212, 215,

245
output sink, 215
overwrite(), 306

P
PageRank algorithm, 9
Pandas

about, 340
Function APIs, 354, 356
user-defined functions (UDFs), 115-117,

336, 354, 355
parallel operations, 323
parallelism parameter, 320
parallelism, maximizing, 180
parallelize(), 119
parameters, 326
ParamGridBuilder, 317
Parquet

about, 60, 96
as a data source for DataFrames and SQL

tables, 97-100
reading files into DataFrames, 97
reading files into Spark SQL tables, 97
writing DataFrames to, 99

partitionColumn property, 130
partitions

about, 44

creating, 181
distributed data and, 12
importance of, 130
number of for shuffles, 262
shuffle, 182

performance, 262, 265
persist(), 183-187
persistence, caching data and, 183-187
Physical planning phase (Spark SQL), 81
pickle serialization library (Python), 115
Pipeline API, 289
pipelines

creating, 296-302
defined, 290
designing, 289-307
optimizing, 320-321

pivoting, 153
PMML (Predictive Model Markup Language),

335
port 4040, 197
PostgreSQL database, 86, 132
process() method, 233
processedRowsPerSecond column (Streaming‐

Query), 224
processing details, specifying, 216
processing engine, data lakes and, 269
processing-time timeouts, 257
ProcessingTime trigger, 217
Project Hydrogen, 15, 351
Project Tungsten, 4, 16, 82, 119, 167
projections, DataFrames and, 61
projects component (MLflow), 324
publishing metrics using Dropwizard Metrics,

224
PyPI repository, 20
PySpark, 115-117, 354
PySpark shell, 22-25
Python

columns and, 55
data types, 49
type hints, 354

Q
queries

monitoring active, 223-225
snapshots of tables, 283
starting, 218
Structured Streaming, 213-225
with Spark SQL Shell, 119

368 | Index

R
R library, 21
R2, 302-306
R2D3, 309
random forests, 313-316
randomSplit(), 293
ranking functions, 149
RDBSs (relational database management sys‐

tems), 1
RDD (Resilient Distributed Dataset), 5, 16, 43,

75
rdd.getNumPartitions(), 13
read(), 29
reading

Avro files into DataFrames, 104
Avro files into Spark SQL tables, 105
binary files into DataFrames, 110
CSV files into DataFrames, 102
CSV files into Spark SQL tables, 102
from data lakes, 269
from databases, 267
from files, 226
from Kafka, 228
image files into DataFrames, 108
JSON files into DataFrames, 100
JSON files into Spark SQL tables, 100
ORC files into DataFrames, 107
ORC files into Spark SQL tables, 107
Parquet files into DataFrames, 97
Parquet files into SQL tables, 97
tables into DataFrames, 93

README.md file, 21
real-time inference, export patterns for, 334
receivers, 169
record Name property, 106
record-at-a-time processing model, 207
recordNamespace property, 106
redesigning Pandas UDFs, 354
reduce() function, 144, 162
reduceByKey(), 187
registry component (MLflow), 324
regression

decision trees, 308-313
linear, 294
logistic, 287
random forests, 313-316

rename() method, 153
renaming columns, 63, 153
REST API, 324

reverse() function, 139
RFormula, 300
RISELab, 3
RMSE (root-mean-square error), 302
rollup(), 235
root, of decision trees, 308
Row objects, 57
rows

generic, 69
in DataFrames, 57
random feature selection by, 313

Ruiz, Edgar, Mastering Spark with R, xvi, 285
runID column (StreamingQuery), 224
running Spark SQL queries, 120
runs, 325
runtime architecture (Spark), 11, 74, 96, 170,

203, 234, 345

S
sample data, 160, 162-167
sampleBy() method, 68
save() method, 96
saveAsTable() method, 96
saving models, 306
sbt (Scala build tool), 40
Scala

building standalone applications in, 40
case classes in, 71
columns and, 55
single API for, 157-160
using, 22-25

Scala shell, 23, 274
scalability

of databases, 268
of storage solutions, 265
Spark, 177-182

scalar Pandas UDFs, 116
SCD (slowly changing dimension), 271
schedulers, 351
schema enforcement/governance, 271, 278-279
schema() method, 94
SchemaRDDs, 43
schemas, 50-54, 279
scikit-learn, 289, 310, 312, 336, 339
second-generation Tungsten engine, 167
select() method, 28, 61, 73, 162, 215, 235
selectExpr() function, 138
semantic guarantees, with watermarks, 245
sep property, 103

Index | 369

sequence() function, 139
SerDe (serialization and deserialization), 169
Shark, 113
shells

PySpark, 22-25
Scala, 23, 274
Spark, 25, 85, 119
Spark SQL, 119

SHJ (shuffle hash join), 349
shuffle partitions, 182
shuffle service, 179
shuffle() function, 139
shuffles, 187, 262
SIMD (Single Instruction, Multiple Data), 167
singular API, 157-160
sinks

custom, 230-234
options for, 222
streaming, 226-234

skew, 199
sklearn, 332
slice() function, 139
SMJ (shuffle sort merge join), 189-197, 349
snapshots, querying, 283
SNLJ (shuffle-and-replicate nested loop join),

349
Snowflake, 137
software, user in this book, xviii
sortBy(), 187
source options, 222
source rate limits, setting, 262
Spark

about, xvi, 4
application concepts, 25-28
building lakehouses with Delta Lake and,

274-283
community adoption/expansion of, 16
design characteristics of, 4
developers and, 14-17
directories, 21
distributed execution, 10-14
downloading, 19-22
early years of, 3
ease of use of, 5
evolution of, 1
extensibility of, 5
files, 21
internal format compared with Java Object

Format, 168

leveraging for non-MLlib models, 336-340
modularity of, 5
scaling, 177
speed of, 4
structuring, 44-47
uses for, 14-17

Spark + AI Summit, 16
Spark APIs, 16
Spark Cassandra Connector, 231
Spark Core, 343
Spark shell, 25, 85, 119
Spark SQL

about, 6, 7, 76, 343
Apache Hive and, 113-155
basic query examples, 84-89
Catalyst optimizer, 77-82
Datasets and, 157-172
evaluation order, 115
higher-order functions in, 138-144
JDBC database, 89, 129-131
joins, 348
null checking, 115
operations, 144-155
tables, 89-94
usage and interface, 83
user-defined functions (UDFs), 114
using in Spark applications, 84-89
views, 89-94

Spark Thrift JDBC/ODBC server, 121
Spark Tuning Guide, 320
Spark UI, 31-33, 197, 197-205
Spark web UI (see web UI)
spark-shell, 31
spark-submit script, 21, 174, 179, 197, 352
spark.executor.memory, 178
spark.local.dir option, 182
spark.ml package, 8, 312
spark.mllib package, 8
spark.read(), 247
spark.read.csv() function, 60
spark.readStream(), 247, 333
spark.sql programmatic interface, 85
SparkConf object, 11
SparkContext object, 11, 263
Sparkling Water, 335
sparklyr, 21
SparkR project, 21
SparkSession, 10, 26, 85, 92
SparseVector, 298

370 | Index

speed, of Spark, 4
SQL databases, 90, 129-131
SQL tab (Spark UI), 202
SQL tables

about, 60
caching, 93
creating, 119
data sources for, 94-112
inserting data into, 120
reading Avro files into, 105
reading CSV files into, 102
reading JSON files into, 100
reading ORC files into, 107
reading Parquet files into, 97
writing DataFrames to, 99

sql() method, 84
SQLContext object, 11
SQLLine CLI, 120
stages, 26, 28
Stages tab (Spark UI), 198
standalone applications

building in Scala, 40
Counting M&Ms example, 35-39
Scala/Java project using Maven coordinates,

274
Standalone cluster manager, 12
star syntax, 281
start() method, 218, 221
start-thriftserver.sh, 121
stat() method, 68
stateful streaming aggregations, 238-246
stateful transformations, 215, 235
stateless transformations, 215, 235
static resource allocation, 177
stddev() , 239
storage

data lakes and, 269
importance of optimal, 265
levels of, 184

Storage tab (Spark UI), 200
stream-static joins, 246
stream-stream joins, 248-252
streaming (see Structured Streaming)
streaming DataFrame, 214
streaming joins, 246, 248-252
streaming queries, multiple, 263
streaming sources, custom, 230-234
streaming state, 234
StreamingContext object, 11

StreamingQuery, 223
StreamingQueryListener, 225
streams, loading into Delta Lake tables, 277
StringIndexer, 298, 320
Structured APIs

about, 43
DataFrame API, 47-69
Dataset API, 69-74
Resilient Distributed Dataset (RDD), 43
Spark SQL, 76-82
structuring Spark, 44-47

structured data, 49
Structured Streaming, 207-264

about, 6, 8, 352
APIs, 8
arbitrary stateful computations, 253-261
checkpointing, 217
data engineers and, 15
data sources, 226-234
data transformations, 234-237
loading data streams into Delta Lake tables,

277
micro-batch stream processing, 208
MLflow and, 333
performance tuning, 262
philosophy of, 210
programming model of, 211-213
queries, 213-225
sinks, 226-234
stateful streaming aggregations, 238-246
stream processing engine, 207-211
streaming joins, 246-252

STS (Spark Thrift Server), 119
sum() method, 67, 239
supervised machine learning, 286
Support Vector Machines, 287
supported languages, 357

T
Tableau, querying with, 122-129
tables

about, 89
(see also SQL tables)

creating SQL databases and, 90
Delta Lake, 275, 281
reading into DataFrames, 93
unmanaged compared with managed, 89

tabs (Spark UI), 197-205
take() method, 73

Index | 371

tasks, 26, 28
temporary views, 92
TensorFlow, 332, 336
test data sets, creating, 291-293
third-party Spark packages, 5
Thrift JDBC/ODBC server, 119
throughput, 330
Tibshirani, Robert, The Elements of Statistical

Learning, 309
timeouts, managing interactive groups using,

257-261
to_date() function, 64
to_json() function, 138
to_timestamp() function, 64
tracking component (MLflow), 325-330
training data, 291-293
transaction support, 265, 271
transform() function, 142, 293
transformations

about, 28-30
data, 279-282
DataFrames and, 61, 222
narrow, 30
sample data, 162-167
stateful, 215, 235
stateless, 215, 235
Structured Streaming and, 234-237
wide, 30

transformers, 290, 293
tree-based models, 307-316
triggering details, 217
tuning Spark, 173-205
tuples, 50
typed APIs, 69
typed objects, 69

U
Uber Engineering, 272
UDFs (see user-defined functions (UDFs))
union() method, 147, 357
unionAll() method, 357
unions, 147
unmanaged stateful transformations, 237
unmanaged tables, 89
untyped APIs, 69
untyped objects, 69
Update mode (Structured Streaming), 212, 215,

245
updating data, 280

upperBound property, 130
upserting, 271, 281
user-defined functions (UDFs), 114-117, 239,

336
user-related data, deleting, 280
utility functions, 138

V
validation data set, 316
variables, shared (see shared variables)
VectorAssembler transformer, 293
VectorIndexer, 300
vectorized ORC reader, 106
vectorized reader, 106
vectorized UDFs (see Pandas, user-defined

functions (UDFs))
views

about, 89
creating, 91
metadata, 93

W
watermark delay, 243
watermarks

handling late data with, 243
inner joins with optional, 248-252
outer joins with, 252
semantic guarantees with, 245

web UI, 31, 197
Wendell, Patrick, xv
where() method, 61, 235
whole-stage code generation, 119
wide dependencies, 30
wide transformations (see shuffle partitions)
window() function, 149, 240
windowed transformations, 210
windowing, 149-151
withColumn() method, 64, 152
withWatermark(), 244
workloads, 265, 269, 271
writing

DataFrames into Avro files, 105
DataFrames into CSV files, 103
DataFrames into JSON files, 101
DataFrames to ORC files, 108
DataFrames to Parquet files, 99
DataFrames to Spark SQL tables, 99
from databases, 267
to data lakes, 269

372 | Index

to files, 227
to Kafka, 229
to storage systems, 230

X
XGBoost, 323, 335
XGBoost4J-Spark library, 335

Y
Yahoo!, 2
YARN (see Hadoop YARN)
year() function, 65

Z
Zaharia, Matei, xv

Index | 373

About the Authors
Jules S. Damji is a senior developer advocate at Databricks and an MLflow contribu‐
tor. He is a hands-on developer with over 20 years of experience and has worked as a
software engineer at leading companies such as Sun Microsystems, Netscape,
@Home, Loudcloud/Opsware, Verisign, ProQuest, and Hortonworks, building large-
scale distributed systems. He holds a B.Sc. and an M.Sc. in computer science and an
MA in political advocacy and communication from Oregon State University, Cal
State, and Johns Hopkins University, respectively.

Brooke Wenig is a machine learning practice lead at Databricks. She leads a team of
data scientists who develop large-scale machine learning pipelines for customers, as
well as teaching courses on distributed machine learning best practices. Previously,
she was a principal data science consultant at Databricks. She holds an M.S. in com‐
puter science from UCLA with a focus on distributed machine learning.

Tathagata Das is a staff software engineer at Databricks, an Apache Spark committer,
and a member of the Apache Spark Project Management Committee (PMC). He is
one of the original developers of Apache Spark, the lead developer of Spark Stream‐
ing (DStreams), and is currently one of the core developers of Structured Streaming
and Delta Lake. Tathagata holds an M.S. in computer science from UC Berkeley.

Denny Lee is a staff developer advocate at Databricks who has been working with
Apache Spark since 0.6. He is a hands-on distributed systems and data sciences engi‐
neer with extensive experience developing internet-scale infrastructure, data plat‐
forms, and predictive analytics systems for both on-premises and cloud
environments. He also has an M.S. in biomedical informatics from Oregon Health
and Sciences University and has architected and implemented powerful data solu‐
tions for enterprise healthcare customers.

Colophon
The animal on the cover of Learning Spark, Second Edition, is the small-spotted cat‐
shark (Scyliorhinus canicula), an abundant species in the shallow waters of the Medi‐
terranean Sea and in the Atlantic, off the coast of Europe and northern Africa. It is a
small, slender shark with a blunt head, oval eyes, and a rounded snout. The dorsal
surface is grayish-brown and patterned with many small dark and sometimes lighter
spots. Like other sharks, its skin texture is formed of “dermal denticles,” tiny “teeth”
that grow all in one direction (like fish scales), forming a surface that’s both hydrody‐
namic as well as resistant to injuries and parasites.

This night-feeding shark grows to about 3 feet long, weighs an average of 3 pounds at
maturity, and in the wild can live up to 12 years. It feeds mostly on mollusks, crusta‐
ceans, cephalopods, and polychaete worms, though it also eats other fish. This species

exhibits some social behaviors, especially when young, and a 2014 study conducted
by the University of Exeter found that individuals displayed differing social personali‐
ties. Across changes in habitat, some sharks preferred staying in conspicuous groups,
while others remained alone, camouflaged at the bottom of the habitat. These sociali‐
zation behaviors also reflect a variability in strategies for safety, either through num‐
bers or via camouflage.

This catshark is oviparous (egg-laying), and females deposit 18-20 small egg cases
each year. These hard-shelled cases have tendrils that catch on seaweed at the ocean
floor; each case contains one young shark. The young hatch after about nine months.

Because the small-spotted catshark is undesirable to commercial fisheries, popula‐
tions are currently stable and the species is listed by the IUCN as being of Least Con‐
cern. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from J. G. Wood’s Animate Creation (1885). The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	How the Book Is Organized
	How to Use the Code Examples
	Software and Configuration Used
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Apache Spark: A Unified Analytics Engine
	The Genesis of Spark
	Big Data and Distributed Computing at Google
	Hadoop at Yahoo!
	Spark’s Early Years at AMPLab

	What Is Apache Spark?
	Speed
	Ease of Use
	Modularity
	Extensibility

	Unified Analytics
	Apache Spark Components as a Unified Stack
	Apache Spark’s Distributed Execution

	The Developer’s Experience
	Who Uses Spark, and for What?
	Community Adoption and Expansion

	Chapter 2. Downloading Apache Spark and Getting Started
	Step 1: Downloading Apache Spark
	Spark’s Directories and Files

	Step 2: Using the Scala or PySpark Shell
	Using the Local Machine

	Step 3: Understanding Spark Application Concepts
	Spark Application and SparkSession
	Spark Jobs
	Spark Stages
	Spark Tasks

	Transformations, Actions, and Lazy Evaluation
	Narrow and Wide Transformations

	The Spark UI
	Your First Standalone Application
	Counting M&Ms for the Cookie Monster
	Building Standalone Applications in Scala

	Summary

	Chapter 3. Apache Spark’s Structured APIs
	Spark: What’s Underneath an RDD?
	Structuring Spark
	Key Merits and Benefits

	The DataFrame API
	Spark’s Basic Data Types
	Spark’s Structured and Complex Data Types
	Schemas and Creating DataFrames
	Columns and Expressions
	Rows
	Common DataFrame Operations
	End-to-End DataFrame Example

	The Dataset API
	Typed Objects, Untyped Objects, and Generic Rows
	Creating Datasets
	Dataset Operations
	End-to-End Dataset Example

	DataFrames Versus Datasets
	When to Use RDDs

	Spark SQL and the Underlying Engine
	The Catalyst Optimizer

	Summary

	Chapter 4. Spark SQL and DataFrames: Introduction to Built-in Data Sources
	Using Spark SQL in Spark Applications
	Basic Query Examples

	SQL Tables and Views
	Managed Versus UnmanagedTables
	Creating SQL Databases and Tables
	Creating Views
	Viewing the Metadata
	Caching SQL Tables
	Reading Tables into DataFrames

	Data Sources for DataFrames and SQL Tables
	DataFrameReader
	DataFrameWriter
	Parquet
	JSON
	CSV
	Avro
	ORC
	Images
	Binary Files

	Summary

	Chapter 5. Spark SQL and DataFrames: Interacting with External Data Sources
	Spark SQL and Apache Hive
	User-Defined Functions

	Querying with the Spark SQL Shell, Beeline, and Tableau
	Using the Spark SQL Shell
	Working with Beeline
	Working with Tableau

	External Data Sources
	JDBC and SQL Databases
	PostgreSQL
	MySQL
	Azure Cosmos DB
	MS SQL Server
	Other External Sources

	Higher-Order Functions in DataFrames and Spark SQL
	Option 1: Explode and Collect
	Option 2: User-Defined Function
	Built-in Functions for Complex Data Types
	Higher-Order Functions

	Common DataFrames and Spark SQL Operations
	Unions
	Joins
	Windowing
	Modifications

	Summary

	Chapter 6. Spark SQL and Datasets
	Single API for Java and Scala
	Scala Case Classes and JavaBeans for Datasets

	Working with Datasets
	Creating Sample Data
	Transforming Sample Data

	Memory Management for Datasets and DataFrames
	Dataset Encoders
	Spark’s Internal Format Versus Java Object Format
	Serialization and Deserialization (SerDe)

	Costs of Using Datasets
	Strategies to Mitigate Costs

	Summary

	Chapter 7. Optimizing and Tuning Spark Applications
	Optimizing and Tuning Spark for Efficiency
	Viewing and Setting Apache Spark Configurations
	Scaling Spark for Large Workloads

	Caching and Persistence of Data
	DataFrame.cache()
	DataFrame.persist()
	When to Cache and Persist
	When Not to Cache and Persist

	A Family of Spark Joins
	Broadcast Hash Join
	Shuffle Sort Merge Join

	Inspecting the Spark UI
	Journey Through the Spark UI Tabs

	Summary

	Chapter 8. Structured Streaming
	Evolution of the Apache Spark Stream Processing Engine
	The Advent of Micro-Batch Stream Processing
	Lessons Learned from Spark Streaming (DStreams)
	The Philosophy of Structured Streaming

	The Programming Model of Structured Streaming
	The Fundamentals of a Structured Streaming Query
	Five Steps to Define a Streaming Query
	Under the Hood of an Active Streaming Query
	Recovering from Failures with Exactly-Once Guarantees
	Monitoring an Active Query

	Streaming Data Sources and Sinks
	Files
	Apache Kafka
	Custom Streaming Sources and Sinks

	Data Transformations
	Incremental Execution and Streaming State
	Stateless Transformations
	Stateful Transformations

	Stateful Streaming Aggregations
	Aggregations Not Based on Time
	Aggregations with Event-Time Windows

	Streaming Joins
	Stream–Static Joins
	Stream–Stream Joins

	Arbitrary Stateful Computations
	Modeling Arbitrary Stateful Operations with mapGroupsWithState()
	Using Timeouts to Manage Inactive Groups
	Generalization with flatMapGroupsWithState()

	Performance Tuning
	Summary

	Chapter 9. Building Reliable Data Lakes with Apache Spark
	The Importance of an Optimal Storage Solution
	Databases
	A Brief Introduction to Databases
	Reading from and Writing to Databases Using Apache Spark
	Limitations of Databases

	Data Lakes
	A Brief Introduction to Data Lakes
	Reading from and Writing to Data Lakes using Apache Spark
	Limitations of Data Lakes

	Lakehouses: The Next Step in the Evolution of Storage Solutions
	Apache Hudi
	Apache Iceberg
	Delta Lake

	Building Lakehouses with Apache Spark and Delta Lake
	Configuring Apache Spark with Delta Lake
	Loading Data into a Delta Lake Table
	Loading Data Streams into a Delta Lake Table
	Enforcing Schema on Write to Prevent Data Corruption
	Evolving Schemas to Accommodate Changing Data
	Transforming Existing Data
	Auditing Data Changes with Operation History
	Querying Previous Snapshots of a Table with Time Travel

	Summary

	Chapter 10. Machine Learning with MLlib
	What Is Machine Learning?
	Supervised Learning
	Unsupervised Learning
	Why Spark for Machine Learning?

	Designing Machine Learning Pipelines
	Data Ingestion and Exploration
	Creating Training and Test Data Sets
	Preparing Features with Transformers
	Understanding Linear Regression
	Using Estimators to Build Models
	Creating a Pipeline
	Evaluating Models
	Saving and Loading Models

	Hyperparameter Tuning
	Tree-Based Models
	k-Fold Cross-Validation
	Optimizing Pipelines

	Summary

	Chapter 11. Managing, Deploying, and Scaling Machine Learning Pipelines with Apache Spark
	Model Management
	MLflow

	Model Deployment Options with MLlib
	Batch
	Streaming
	Model Export Patterns for Real-Time Inference

	Leveraging Spark for Non-MLlib Models
	Pandas UDFs
	Spark for Distributed Hyperparameter Tuning

	Summary

	Chapter 12. Epilogue: Apache Spark 3.0
	Spark Core and Spark SQL
	Dynamic Partition Pruning
	Adaptive Query Execution
	SQL Join Hints
	Catalog Plugin API and DataSourceV2
	Accelerator-Aware Scheduler

	Structured Streaming
	PySpark, Pandas UDFs, and Pandas Function APIs
	Redesigned Pandas UDFs with Python Type Hints
	Iterator Support in Pandas UDFs
	New Pandas Function APIs

	Changed Functionality
	Languages Supported and Deprecated
	Changes to the DataFrame and Dataset APIs
	DataFrame and SQL Explain Commands

	Summary

	Index
	About the Authors
	Colophon

