
3

Hadoop in a heartbeat

We live in the age of big data, where the data volumes we need to work with on a
day-to-day basis have outgrown the storage and processing capabilities of a single
host. Big data brings with it two fundamental challenges: how to store and work
with voluminous data sizes, and more important, how to understand data and turn
it into a competitive advantage. 

 Hadoop fills a gap in the market by effectively storing and providing computa-
tional capabilities for substantial amounts of data. It’s a distributed system made up
of a distributed filesystem, and it offers a way to parallelize and execute programs
on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop
because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter
to address their big data needs, and it’s making inroads across all industrial sectors. 

 Because you’ve come to this book to get some practical experience with
Hadoop and Java,1 I’ll start with a brief overview and then show you how to install

This chapter covers
! Examining how the core Hadoop system works
! Understanding the Hadoop ecosystem
! Running a MapReduce job

1 To benefit from this book, you should have some practical experience with Hadoop and understand the
basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010).
Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua
Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.

http://www.it-ebooks.info/


4 CHAPTER 1 Hadoop in a heartbeat

Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic
refresher on the nuts and bolts of Hadoop, which will allow you to move on to the
more challenging aspects of working with it. 

 Let’s get started with a detailed overview. 

1.1 What is Hadoop?
Hadoop is a platform that provides both distributed storage and computational capa-
bilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,2 an
open source crawler and search engine. At the time, Google had published papers
that described its novel distributed filesystem, the Google File System (GFS), and
MapReduce, a computational framework for parallel processing. The successful
implementation of these papers’ concepts in Nutch resulted in it being split into two
separate projects, the second of which became Hadoop, a first-class Apache project. 

 In this section we’ll look at Hadoop from an architectural perspective, examine
how industry uses it, and consider some of its weaknesses. Once we’ve covered this
background, we’ll look at how to install Hadoop and run a MapReduce job. 

 Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture3

that consists of the following primary components:

2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella. 
3 A model of communication where one process, called the master, has control over one or more other pro-

cesses, called slaves. 

Server cloud

Distributed computation

Distributed storage

Hadoop runs on
commodity hardware.

The computation tier is a
general-purpose scheduler and

a distributed processing
framework called MapReduce.

Storage is provided via
a distributed filesystem

called HDFS.

Figure 1.1 The Hadoop environment is a distributed system that runs on commodity hardware.

http://www.it-ebooks.info/


5What is Hadoop?

! Hadoop Distributed File System (HDFS) for data storage.
! Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-

purpose scheduler and resource manager. Any YARN application can run on a
Hadoop cluster.

! MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is
implemented as a YARN application.

Traits intrinsic to Hadoop are data partitioning and parallel computation of large
datasets. Its storage and computational capabilities scale with the addition of hosts to
a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in
the petabytes. 

 In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce
architectures. 

1.1.1 Core Hadoop components
To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS. 

HDFS

HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled
after the Google File System (GFS) paper.4 HDFS is optimized for high throughput and
works best when reading and writing large files (gigabytes and larger). To support this
throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality
optimizations to reduce network input/output (I/O). 

 Scalability and availability are also key traits of HDFS, achieved in part due to data
replication and fault tolerance. HDFS replicates files for a configured number of times,
is tolerant of both software and hardware failure, and automatically re-replicates data
blocks on nodes that have failed. 

4 See “The Google File System‚” http://research.google.com/archive/gfs.html.

The HDFS master is responsible
for partitioning the storage across
the slave nodes and keeping track

of where data is located.

The MapReduce master is
responsible for organizing where
computational work should be
scheduled on the slave nodes.

The YARN master performs
the actual scheduling of work

for YARN applications.

YARN slave MapReduce slave HDFS slave

YARN master MapReduce master HDFS master

YARN slave MapReduce slave HDFS slave

YARN slave MapReduce slave HDFS slave

Figure 1.2 High-level Hadoop 2 master-slave architecture

http://www.it-ebooks.info/


6 CHAPTER 1 Hadoop in a heartbeat

Figure 1.3 shows a logical representation of the components in HDFS: the NameNode
and the DataNode. It also shows an application that’s using the Hadoop filesystem
library to access HDFS. 

 Hadoop 2 introduced two significant new features for HDFS—Federation and
High Availability (HA):

! Federation allows HDFS metadata to be shared across multiple NameNode
hosts, which aides with HDFS scalability and also provides data isolation, allow-
ing different applications or teams to run their own NameNodes without fear of
impacting other NameNodes on the same cluster.

! High Availability in HDFS removes the single point of failure that existed in
Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS
HA also offers the ability for failover (the process by which a standby Name-
Node takes over work from a failed primary NameNode) to be automated.

The HDFS NameNode keeps in memory the
metadata about the filesystem such as which
DataNodes manage the blocks for each file.

Files are made up of blocks, and each file
can be replicated multiple times, meaning
there are many identical copies of each

block for the file (by default, 3).

DataNodes communicate
with each other for
pipelining file reads

and writes.

Client
application

Hadoop
filesystem

client

HDFS clients talk to the
NameNode for metadata-related

activities and DataNodes for
reading and writing files.

/tmp/file1.txt Block A

Block B

DataNode 2

DataNode 3

DataNode 1

DataNode 3

NameNode

C

DataNode 1

D

B A

DataNode 2

C

D B

DataNode 3

A

C

Figure 1.3 An HDFS client communicating with the master NameNode and slave DataNodes

http://www.it-ebooks.info/


7What is Hadoop?

Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

YARN

YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2
and was created to address challenges with the Hadoop 1 architecture: 

! Deployments larger than 4,000 nodes encountered scalability issues, and add-
ing additional nodes didn’t yield the expected linear scalability improvements. 

! Only MapReduce workloads were supported, which meant it wasn’t suited to
run execution models such as machine learning algorithms that often require
iterative computations.

For Hadoop 2 these problems were solved by extracting the scheduling function
from MapReduce and reworking it into a generic application scheduler, called YARN.
With this change, Hadoop clusters are no longer limited to running MapReduce
workloads; YARN enables a new set of workloads to be natively supported on Hadoop,
and it allows alternative processing models, such as graph processing and stream pro-
cessing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write
YARN applications.

 YARN’s architecture is simple because its primary role is to schedule and manage
resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core
components in YARN: the ResourceManager and the NodeManager. Also shown are
the components specific to YARN applications, namely, the YARN application client,
the ApplicationMaster, and the container.

 To fully realize the dream of a generalized distributed platform, Hadoop 2 intro-
duced another change—the ability to allocate containers in various configurations.

A YARN client is
responsible for creating
the YARN application.

Client ResourceManager

ApplicationMaster 

NodeManager

Container

The ResourceManager is the
YARN master process and is responsible
for scheduling and managing resources,

called “containers.” 

The ApplicationMaster is created by
the ResourceManager and is responsible
for requesting containers to perform

application-specific work.

The NodeManager is the slave
YARN process that runs on each node.

It is responsible for launching and
managing containers.

Containers are YARN
application-specific processes
that perform some function
pertinent to the application.

Figure 1.4 The logical YARN architecture showing typical communication between the core YARN 
components and YARN application components

http://www.it-ebooks.info/


8 CHAPTER 1 Hadoop in a heartbeat

Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce pro-
cesses that were allowed to run on a single node. This was wasteful in terms of cluster
utilization and resulted in underutilized resources during MapReduce operations, and
it also imposed memory limits for map and reduce tasks. With YARN, each container
requested by an ApplicationMaster can have disparate memory and CPU traits, and this
gives YARN applications full control over the resources they need to fulfill their work.

 You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how
YARN works and how to write a YARN application. Next up is an examination of
MapReduce, Hadoop’s computation engine. 

MAPREDUCE

MapReduce is a batch-based, distributed computing framework modeled after
Google’s paper on MapReduce.5 It allows you to parallelize work over a large amount
of raw data, such as combining web logs with relational data from an OLTP database to
model how users interact with your website. This type of work, which could take days
or longer using conventional serial programming techniques, can be reduced to min-
utes using MapReduce on a Hadoop cluster. 

 The MapReduce model simplifies parallel processing by abstracting away the com-
plexities involved in working with distributed systems, such as computational paral-
lelization, work distribution, and dealing with unreliable hardware and software. With
this abstraction, MapReduce allows the programmer to focus on addressing business
needs rather than getting tangled up in distributed system complications. 

 MapReduce decomposes work submitted by a client into small parallelized map
and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in

5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/
mapreduce.html.

Hadoop MapReduce
master

Map

Map

Map

Reduce

Client

Input
data

Output
data

The client submits
a MapReduce job.

MapReduce decomposes the
job into map and reduce tasks
and schedules them for remote

execution on the slave
nodes.

Job

Job parts Job parts

Reduce

Figure 1.5 A client submitting 
a job to MapReduce, breaking 
the work into small map and 
reduce tasks

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://www.it-ebooks.info/


9What is Hadoop?

MapReduce are borrowed from those found in the Lisp functional programming lan-
guage, and they use a shared-nothing model to remove any parallel execution interde-
pendencies that could add unwanted synchronization points or state sharing.6

 The role of the programmer is to define map and reduce functions where the map
function outputs key/value tuples, which are processed by reduce functions to pro-
duce the final output. Figure 1.6 shows a pseudocode definition of a map function
with regard to its input and output.

 The power of MapReduce occurs between the map output and the reduce input in
the shuffle and sort phases, as shown in figure 1.7. 

6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node
is independent and self-sufficient. 

The map function takes as input a key/value pair, which
represents a logical record from the input data source.

In the case of a file, this could be a line, or if the
input source is a table in a database, it could be a row.

list(key2, value2)map(key1, value1)

The map function produces zero or more output key/value pairs for
one input pair. For example, if the map function is a filtering

map function, it may only produce output if a certain condition is
met. Or it could be performing a demultiplexing operation, where

a single key/value yields multiple key/value output pairs.

Figure 1.6 A 
logical view of the 
map function that 
takes a key/value 
pair as input

The shuffle and sort phases are responsible for two primary activities: determining
the reducer that should receive the map output key/value pair (called partitioning);

and ensuring that all the input keys for a given reducer are sorted. 

cat,doc1

dog,doc1

hamster,doc1

cat,doc2

dog,doc2

hampster,doc2
chipmunk,doc2

Map output Shuffle + sort

Mapper 1

Mapper 2

cat,list(doc1,doc2)

dog,list(doc1,doc2)

hamster,list(doc1,doc2)

chipmunk,list(doc2)
Reducer 2

Sorted reduce Input

 Map outputs for the same key (such as “hamster”)
go to the same reducer and are then combined to

form a single input record for the reducer.

Each reducer has all of
its input keys sorted.

Reducer 1

Reducer 3

Figure 1.7 MapReduce’s shuffle and sort phases

http://www.it-ebooks.info/


10 CHAPTER 1 Hadoop in a heartbeat

Figure 1.8 shows a pseudocode definition of a reduce function.
 With the advent of YARN in Hadoop 2, MapReduce has been rewritten as a YARN

application and is now referred to as MapReduce 2 (or MRv2). From a developer’s per-
spective, MapReduce in Hadoop 2 works in much the same way it did in Hadoop 1,
and code written for Hadoop 1 will execute without code changes on version 2.7

There are changes to the physical architecture and internal plumbing in MRv2 that
are examined in more detail in chapter 2.

 With some Hadoop basics under your belt, it’s time to take a look at the Hadoop
ecosystem and the projects that are covered in this book. 

1.1.2 The Hadoop ecosystem

The Hadoop ecosystem is diverse and grows by the day. It’s impossible to keep track of
all of the various projects that interact with Hadoop in some form. In this book the
focus is on the tools that are currently receiving the greatest adoption by users, as
shown in figure 1.9.

 MapReduce and YARN are not for the faint of heart, which means the goal for
many of these Hadoop-related projects is to increase the accessibility of Hadoop to
programmers and nonprogrammers. I’ll cover many of the technologies listed in fig-
ure 1.9 in this book and describe them in detail within their respective chapters. In
addition, the appendix includes descriptions and installation instructions for technol-
ogies that are covered in this book. 

Coverage of the Hadoop ecosystem in this book The Hadoop ecosystem grows
by the day, and there are often multiple tools with overlapping features and
benefits. The goal of this book is to provide practical techniques that cover
the core Hadoop technologies, as well as select ecosystem technologies that
are ubiquitous and essential to Hadoop.

Let’s look at the hardware requirements for your cluster. 

7 Some code may require recompilation against Hadoop 2 binaries to work with MRv2; see chapter 2 for more
details.

The reduce function is
called once per unique

map output key. 

All of the map output values that
were emi!ed across all the mappers
for "key2" are provided in a list.

Like the map function, the reduce can output zero-to-many
key/value pairs. Reducer output can write to flat files

in HDFS, insert/update rows in a NoSQL database, or write
to any data sink, depending on the requirements of the job.

list(key3, value3)reduce (key2, list (value2's)) 

Figure 1.8 A logical view of the 
reduce function that produces 
output for flat files‚ NoSQL rows‚ 
or any data sink

http://www.it-ebooks.info/


11What is Hadoop?

1.1.3 Hardware requirements

The term commodity hardware is often used to describe Hadoop hardware require-
ments. It’s true that Hadoop can run on any old servers you can dig up, but you’ll still
want your cluster to perform well, and you don’t want to swamp your operations
department with diagnosing and fixing hardware issues. Therefore, commodity refers to
mid-level rack servers with dual sockets, as much error-correcting RAM as is affordable,
and SATA drives optimized for RAID storage. Using RAID on the DataNode filesystems
used to store HDFS content is strongly discouraged because HDFS already has replica-
tion and error-checking built in; on the NameNode, RAID is strongly recommended
for additional security.8

 From a network topology perspective with regard to switches and firewalls, all of
the master and slave nodes must be able to open connections to each other. For
small clusters, all the hosts would run 1 GB network cards connected to a single,
good-quality switch. For larger clusters, look at 10 GB top-of-rack switches that have at
least multiple 1 GB uplinks to dual-central switches. Client nodes also need to be able
to talk to all of the master and slave nodes, but if necessary, that access can be from
behind a firewall that permits connection establishment only from the client side. 

8 HDFS uses disks to durably store metadata about the filesystem.

High-level
languages

Predictive
analytics

Alternative
processing

Miscellaneous

SQL-on-Hadoop

Weave

Scalding

Cascalog

Crunch

Cascading

Pig

Impala

Hive

RHadoop

Rhipe

R

Summingbird

Spark

Storm

ElephantDB

HDFS YARN + MapReduce

Hadoop

Figure 1.9 Hadoop and related technologies that are covered in this book

http://www.it-ebooks.info/


12 CHAPTER 1 Hadoop in a heartbeat

 After reviewing Hadoop from a software and hardware perspective, you’ve likely
developed a good idea of who might benefit from using it. Once you start working
with Hadoop, you’ll need to pick a distribution to use, which is the next topic. 

1.1.4 Hadoop distributions

Hadoop is an Apache open source project, and regular releases of the software are
available for download directly from the Apache project’s website (http://
hadoop.apache.org/releases.html#Download). You can either download and install
Hadoop from the website or use a quickstart virtual machine from a commercial dis-
tribution, which is usually a great starting point if you’re new to Hadoop and want to
quickly get it up and running. 

 After you’ve whet your appetite with Hadoop and have committed to using it in
production, the next question that you’ll need to answer is which distribution to use.
You can continue to use the vanilla Hadoop distribution, but you’ll have to build the
in-house expertise to manage your clusters. This is not a trivial task and is usually only
successful in organizations that are comfortable with having dedicated Hadoop
DevOps engineers running and managing their clusters.

 Alternatively, you can turn to a commercial distribution of Hadoop, which will give
you the added benefits of enterprise administration software, a support team to con-
sult when planning your clusters or to help you out when things go bump in the night,
and the possibility of a rapid fix for software issues that you encounter. Of course,
none of this comes for free (or for cheap!), but if you’re running mission-critical ser-
vices on Hadoop and don’t have a dedicated team to support your infrastructure and
services, then going with a commercial Hadoop distribution is prudent.

Picking the distribution that’s right for you It’s highly recommended that you
engage with the major vendors to gain an understanding of which distribu-
tion suits your needs from a feature, support, and cost perspective. Remem-
ber that each vendor will highlight their advantages and at the same time
expose the disadvantages of their competitors, so talking to two or more ven-
dors will give you a more realistic sense of what the distributions offer. Make
sure you download and test the distributions and validate that they integrate
and work within your existing software and hardware stacks.

There are a number of distributions to choose from, and in this section I’ll briefly
summarize each distribution and highlight some of its advantages. 

APACHE

Apache is the organization that maintains the core Hadoop code and distribution, and
because all the code is open source, you can crack open your favorite IDE and browse
the source code to understand how things work under the hood. Historically the chal-
lenge with the Apache distributions has been that support is limited to the goodwill of
the open source community, and there’s no guarantee that your issue will be investi-
gated and fixed. Having said that, the Hadoop community is a very supportive one, and

http://hadoop.apache.org/releases.html%23Download
http://hadoop.apache.org/releases.html%23Download
http://www.it-ebooks.info/


13What is Hadoop?

responses to problems are usually rapid, even if the actual fixes will likely take longer
than you may be able to afford.

 The Apache Hadoop distribution has become more compelling now that adminis-
tration has been simplified with the advent of Apache Ambari, which provides a GUI
to help with provisioning and managing your cluster. As useful as Ambari is, though,
it’s worth comparing it against offerings from the commercial vendors, as the com-
mercial tooling is typically more sophisticated. 

CLOUDERA

Cloudera is the most tenured Hadoop distribution, and it employs a large number of
Hadoop (and Hadoop ecosystem) committers. Doug Cutting, who along with Mike
Caferella originally created Hadoop, is the chief architect at Cloudera. In aggregate,
this means that bug fixes and feature requests have a better chance of being addressed
in Cloudera compared to Hadoop distributions with fewer committers.

 Beyond maintaining and supporting Hadoop, Cloudera has been innovating in
the Hadoop space by developing projects that address areas where Hadoop has been
weak. A prime example of this is Impala, which offers a SQL-on-Hadoop system, simi-
lar to Hive but focusing on a near-real-time user experience, as opposed to Hive,
which has traditionally been a high-latency system. There are numerous other projects
that Cloudera has been working on: highlights include Flume, a log collection and
distribution system; Sqoop, for moving relational data in and out of Hadoop; and
Cloudera Search, which offers near-real-time search indexing. 

HORTONWORKS

Hortonworks is also made up of a large number of Hadoop committers, and it offers
the same advantages as Cloudera in terms of the ability to quickly address problems
and feature requests in core Hadoop and its ecosystem projects.

 From an innovation perspective, Hortonworks has taken a slightly different
approach than Cloudera. An example is Hive: Cloudera’s approach was to develop a
whole new SQL-on-Hadoop system, but Hortonworks has instead looked at innovating
inside of Hive to remove its high-latency shackles and add new capabilities such as sup-
port for ACID. Hortonworks is also the main driver behind the next-generation YARN
platform, which is a key strategic piece keeping Hadoop relevant. Similarly, Horton-
works has used Apache Ambari for its administration tooling rather than developing
an in-house proprietary administration tool, which is the path taken by the other dis-
tributions. Hortonworks’ focus on developing and expanding the Apache ecosystem
tooling has a direct benefit to the community, as it makes its tools available to all users
without the need for support contracts. 

MAPR

MapR has fewer Hadoop committers on its team than the other distributions dis-
cussed here, so its ability to fix and shape Hadoop’s future is potentially more
bounded than its peers.

 From an innovation perspective, MapR has taken a decidedly different approach to
Hadoop support compared to its peers. From the start it decided that HDFS wasn’t an

http://www.it-ebooks.info/


14 CHAPTER 1 Hadoop in a heartbeat

enterprise-ready filesystem, and instead developed its own proprietary filesystem, which
offers compelling features such as POSIX compliance (offering random-write support
and atomic operations), High Availability, NFS mounting, data mirroring, and snapshots.
Some of these features have been introduced into Hadoop 2, but MapR has offered them
from the start, and, as a result, one can expect that these features are robust.

 As part of the evaluation criteria, it should be noted that parts of the MapR stack,
such as its filesystem and its HBase offering, are closed source and proprietary. This
affects the ability of your engineers to browse, fix, and contribute patches back to the
community. In contrast, most of Cloudera’s and Hortonworks’ stacks are open source,
especially Hortonworks’, which is unique in that the entire stack, including the man-
agement platform, is open source. 

 MapR’s notable highlights include being made available in Amazon’s cloud as an
alternative to Amazon’s own Elastic MapReduce and being integrated with Google’s
Compute Cloud.

 I’ve just scratched the surface of the advantages that the various Hadoop distribu-
tions offer; your next steps will likely be to contact the vendors and start playing with
the distributions yourself.

 Next, let’s take a look at companies currently using Hadoop, and in what capacity
they’re using it. 

1.1.5 Who’s using Hadoop?

Hadoop has a high level of penetration in high-tech companies, and it’s starting to
make inroads in a broad range of sectors, including the enterprise (Booz Allen Hamil-
ton, J.P. Morgan), government (NSA), and health care. 

 Facebook uses Hadoop, Hive, and HBase for data warehousing and real-time appli-
cation serving.9 Facebook’s data warehousing clusters are petabytes in size with thou-
sands of nodes, and they use separate HBase-driven, real-time clusters for messaging
and real-time analytics. 

 Yahoo! uses Hadoop for data analytics, machine learning, search ranking, email
antispam, ad optimization, ETL,10 and more. Combined, it has over 40,000 servers run-
ning Hadoop with 170 PB of storage. Yahoo! is also running the first large-scale YARN
deployments with clusters of up to 4,000 nodes.11

 Twitter is a major big data innovator, and it has made notable contributions to
Hadoop with projects such as Scalding, a Scala API for Cascading; Summingbird, a

9 See Dhruba Borthakur, “Looking at the code behind our three uses of Apache Hadoop” on Facebook at
http://mng.bz/4cMc. Facebook has also developed its own SQL-on-Hadoop tool called Presto and is migrat-
ing away from Hive (see Martin Traverso, “Presto: Interacting with petabytes of data at Facebook,” http://
mng.bz/p0Xz).

10 Extract, transform, and load (ETL) is the process by which data is extracted from outside sources, trans-
formed to fit the project’s needs, and loaded into the target data sink. ETL is a common process in data ware-
housing. 

11 There are more details on YARN and its use at Yahoo! in “Apache Hadoop YARN: Yet Another Resource Nego-
tiator” by Vinod Kumar Vavilapalli et al., www.cs.cmu.edu/~garth/15719/papers/yarn.pdf.

http://mng.bz/p0Xz
http://mng.bz/p0Xz
www.cs.cmu.edu/~garth/15719/papers/yarn.pdf
http://www.it-ebooks.info/


15What is Hadoop?

component that can be used to implement parts of Nathan Marz’s lambda architec-
ture; and various other gems such as Bijection, Algebird, and Elephant Bird.

 eBay, Samsung, Rackspace, J.P. Morgan, Groupon, LinkedIn, AOL, Spotify, and
StumbleUpon are some other organizations that are also heavily invested in
Hadoop. Microsoft has collaborated with Hortonworks to ensure that Hadoop works
on its platform.

 Google, in its MapReduce paper, indicated that it uses Caffeine,12 its version of
MapReduce, to create its web index from crawl data. Google also highlights applica-
tions of MapReduce to include activities such as a distributed grep, URL access fre-
quency (from log data), and a term-vector algorithm, which determines popular
keywords for a host. 

 The number of organizations that use Hadoop grows by the day, and if you work at
a Fortune 500 company you almost certainly use a Hadoop cluster in some capacity. It’s
clear that as Hadoop continues to mature, its adoption will continue to grow. 

 As with all technologies, a key part to being able to work effectively with Hadoop is
to understand its shortcomings and design and architect your solutions to mitigate
these as much as possible. 

1.1.6 Hadoop limitations

High availability and security often rank among the top concerns cited with Hadoop.
Many of these concerns have been addressed in Hadoop 2; let’s take a closer look at
some of its weaknesses as of release 2.2.0. 

 Enterprise organizations using Hadoop 1 and earlier had concerns with the lack of
high availability and security. In Hadoop 1, all of the master processes are single
points of failure, which means that a failure in the master process causes an outage. In
Hadoop 2, HDFS now has high availability support, and the re-architecture of Map-
Reduce with YARN has removed the single point of failure. Security is another area
that has had its wrinkles, and it’s receiving focus.

HIGH AVAILABILITY

High availability is often mandated in enterprise organizations that have high uptime
SLA requirements to ensure that systems are always on, even in the event of a node
going down due to planned or unplanned circumstances. Prior to Hadoop 2, the mas-
ter HDFS process could only run on a single node, resulting in single points of fail-
ure.13 Hadoop 2 brings NameNode High Availability (HA) support, which means that
multiple NameNodes for the same Hadoop cluster can be running. With the current
design, one of the NameNodes is active and the other NameNode is designated as a
standby process. In the event that the active NameNode experiences a planned or

12 In 2010 Google moved to a real-time indexing system called Caffeine; see “Our new search index: Caffeine”
on the Google blog (June 8, 2010), http://googleblog.blogspot.com/2010/06/our-new-search-index-
caffeine.html.

13 In reality, the HDFS single point of failure may not be terribly significant; see “NameNode HA” by Suresh
Srinivas and Aaron T. Myers, http://goo.gl/1iSab.

http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://www.it-ebooks.info/


16 CHAPTER 1 Hadoop in a heartbeat

unplanned outage, the standby NameNode will take over as the active NameNode,
which is a process called failover. This failover can be configured to be automatic,
negating the need for human intervention. The fact that a NameNode failover
occurred is transparent to Hadoop clients. 

 The MapReduce master process (the JobTracker) doesn’t have HA support in
Hadoop 2, but now that each MapReduce job has its own JobTracker process (a sepa-
rate YARN ApplicationMaster), HA support is arguably less important. 

 HA support in the YARN master process (the ResourceManager) is important, how-
ever, and development is currently underway to add this feature to Hadoop.14

MULTIPLE DATACENTERS

Multiple datacenter support is another key feature that’s increasingly expected in
enterprise software, as it offers strong data protection and locality properties due to
data being replicated across multiple datacenters. Apache Hadoop, and most of its
commercial distributions, has never had support for multiple datacenters, which poses
challenges for organizations that have software running in multiple datacenters. WAN-
disco is currently the only solution available for Hadoop multidatacenter support. 

SECURITY

Hadoop does offer a security model, but by default it’s disabled. With the security
model disabled, the only security feature that exists in Hadoop is HDFS file- and
directory-level ownership and permissions. But it’s easy for malicious users to sub-
vert and assume other users’ identities. By default, all other Hadoop services are
wide open, allowing any user to perform any kind of operation, such as killing
another user’s MapReduce jobs. 

 Hadoop can be configured to run with Kerberos, a network authentication proto-
col, which requires Hadoop daemons to authenticate clients, both users and other
Hadoop components. Kerberos can be integrated with an organization’s existing
Active Directory and therefore offers a single-sign-on experience for users. Care needs
to be taken when enabling Kerberos, as any Hadoop tool that wishes to interact with
your cluster will need to support Kerberos.

 Wire-level encryption can be configured in Hadoop 2 and allows data crossing the
network (both HDFS transport15 and MapReduce shuffle data16) to be encrypted.
Encryption of data at rest (data stored by HDFS on disk) is currently missing in
Hadoop.

 Let’s examine the limitations of some of the individual systems. 

14 For additional details on YARN HA support, see the JIRA ticket titled “ResourceManager (RM) High-Availability
(HA),” https://issues.apache.org/jira/browse/YARN-149.

15 See the JIRA ticket titled “Add support for encrypting the DataTransferProtocol” at https://issues.apache.org/
jira/browse/HDFS-3637.

16 See the JIRA ticket titled “Add support for encrypted shuffle” at https://issues.apache.org/jira/browse/
MAPREDUCE-4417.

https://issues.apache.org/jira/browse/HDFS-3637
https://issues.apache.org/jira/browse/HDFS-3637
https://issues.apache.org/jira/browse/MAPREDUCE-4417
https://issues.apache.org/jira/browse/MAPREDUCE-4417
http://www.it-ebooks.info/


17Getting your hands dirty with MapReduce

HDFS

The weakness of HDFS is mainly its lack of high availability (in Hadoop 1.x and ear-
lier), its inefficient handling of small files,17 and its lack of transparent compression.
HDFS doesn’t support random writes into files (only appends are supported), and
it’s generally designed to support high-throughput sequential reads and writes over
large files. 

MAPREDUCE

MapReduce is a batch-based architecture, which means it doesn’t lend itself to use cases
that need real-time data access. Tasks that require global synchronization or sharing of
mutable data aren’t a good fit for MapReduce, because it’s a shared-nothing architec-
ture, which can pose challenges for some algorithms.

VERSION INCOMPATIBILITIES

The Hadoop 2 release brought with it some headaches with regard to MapReduce API
runtime compatibility, especially in the org.hadoop.mapreduce package. These problems
often result in runtime issues with code that’s compiled against Hadoop 1 (and ear-
lier). The solution is usually to recompile against Hadoop 2, or to consider a tech-
nique outlined in chapter 2 that introduces a compatibility library to target both
Hadoop versions without the need to recompile code.

 Other challenges with Hive and Hadoop also exist, where Hive may need to be
recompiled to work with versions of Hadoop other than the one it was built against.
Pig has had compatibility issues, too. For example, the Pig 0.8 release didn’t work with
Hadoop 0.20.203, and manual intervention was required to work around this prob-
lem. This is one of the advantages of using a Hadoop distribution other than Apache,
as these compatibility problems have been fixed. If using the vanilla Apache distribu-
tions is desired, it’s worth taking a look at Bigtop (http://bigtop.apache.org/), an
Apache open source automated build and compliance system. It includes all of the
major Hadoop ecosystem components and runs a number of integration tests to
ensure they all work in conjunction with each other. 

 After tackling Hadoop’s architecture and its weaknesses, you’re probably ready to
roll up your sleeves and get hands-on with Hadoop, so let’s look at running the first
example in this book. 

1.2 Getting your hands dirty with MapReduce
This section shows you how to run a MapReduce job on your host.

Installing Hadoop and building the examples To run the code example in this
section, you’ll need to follow the instructions in the appendix, which explain
how to install Hadoop and download and run the examples bundled with this
book.

17 Although HDFS Federation in Hadoop 2 has introduced a way for multiple NameNodes to share file meta-
data, the fact remains that metadata is stored in memory.

http://www.it-ebooks.info/


18 CHAPTER 1 Hadoop in a heartbeat

Let’s say you want to build an inverted index. MapReduce would be a good choice for
this task because it can create indexes in parallel (a common MapReduce use case).
Your input is a number of text files, and your output is a list of tuples, where each
tuple is a word and a list of files that contain the word. Using standard processing
techniques, this would require you to find a mechanism to join all the words together.
A naive approach would be to perform this join in memory, but you might run out of
memory if you have large numbers of unique keys. You could use an intermediary
datastore, such as a database, but that would be inefficient. 

 A better approach would be to tokenize each line and produce an intermediary
file containing a word per line. Each of these intermediary files could then be sorted.
The final step would be to open all the sorted intermediary files and call a function
for each unique word. This is what MapReduce does, albeit in a distributed fashion. 

 Figure 1.10 walks you through an example of a simple inverted index in MapReduce.
Let’s start by defining your mapper. Your reducers need to be able to generate a line
for each word in your input, so your map output key should be each word in the input
files so that MapReduce can join them all together. The value for each key will be the
containing filename, which is your document ID. 

doc1.txt

Mappers
Input filenames
and contents

Intermediate
output

cat, doc1.txt
sat, doc1.txt

mat, doc1.txt

cat, doc2.txt

sat, doc2.txt

dog, doc2.txt

Reducers
Output filenames

and contents

Each map is
called once

per line in the
input file.

The mapper splits
the line into

distinct words
and outputs each
word (the key)
along with the

word’s originating
filename (the

value). 

MapReduce
partitions the
mapper output
keys and ensures
that the same
reducer receives

all output records
containing the

same key. 

MapReduce sorts all
the map output keys
for a single reducer
and calls a reducer
once for each unique
output key along with
a list of all the output

values across all the
reducers for each
unique output key. 

The reducer collects all
the filenames for each

key, and outputs a
single record, with the

key and a comma-
separated list of

filenames.

cat sat mat

part-r-00000

cat: doc1.txt,doc2.txt

doc2.txt

cat sat dog

part-r-00001

sat: doc1.txt,doc2.txt
dog: doc2.txt

part-r-00002

mat: doc1.txt

Figure 1.10 An example of an inverted index being created in MapReduce

http://www.it-ebooks.info/


19Getting your hands dirty with MapReduce

This is the mapper code:
 
 

public static class Map
extends Mapper<LongWritable, Text, Text, Text> {

private Text documentId;
private Text word = new Text();

@Override
protected void setup(Context context) {
String filename =

((FileSplit) context.getInputSplit()).getPath().getName();
documentId = new Text(filename);

}

@Override
protected void map(LongWritable key, Text value,

Context context)
throws IOException, InterruptedException {

for (String token :
StringUtils.split(value.toString())) {

word.set(token);
context.write(word, documentId);

}
}

}

The goal of this reducer is to create an output line for each word and a list of the doc-
ument IDs in which the word appears. The MapReduce framework will take care of
calling the reducer once per unique key outputted by the mappers, along with a list of
document IDs. All you need to do in the reducer is combine all the document IDs
together and output them once in the reducer, as you can see in the following code: 

public static class Reduce
extends Reducer<Text, Text, Text, Text> {

private Text docIds = new Text();
public void reduce(Text key, Iterable<Text> values,

Context context)
throws IOException, InterruptedException {

HashSet<Text> uniqueDocIds = new HashSet<Text>();
for (Text docId : values) {

uniqueDocIds.add(docId.toString());
}
docIds.set(new Text(StringUtils.join(uniqueDocIds, ",")));
context.write(key, docIds);

}
}

Extend the MapReduce Mapper class and specify key/value types for
inputs and outputs. Use the MapReduce default InputFormat, which
supplies keys as byte offsets into the input file and values as each

line in the file. The map emits Text key/value pairs.A Text object to store the 
document ID (filename) 
for the input.

Create a single Text object, which you’ll
reuse to cut down on object creation.MapReduce calls the 

setup method prior 
to feeding a map (or 
reduce) class 
records. In this 
example you’ll store 
the input filename 
for this map.

Extract the filename
from the context.

Call this map method once per input line;
map tasks are run in parallel over subsets

of the input files.

The value contains an entire 
line from the file. The line is 
tokenized using StringUtils 
(which is far faster than 
using String.split). For each word, the map

outputs the word as the
key and the document

ID as the value.

Much like in the Map class, you need to
specify both the input and output key/

value classes when you define the reducer.
The reduce method is 
called once per unique 
map output key. The 
Iterable allows you to 
iterate over all the 
values that were emitted 
for the given key.

Keep a set of all the
document IDs that

are encountered for
the key.Iterate over all the 

document IDs for the key.

Add the document ID to 
the set . You create a new 
Text object because 
MapReduce reuses the Text 
object when iterating over 
the values, which means you 
want to create a new copy.

The reduce outputs the word and
a CSV list of document IDs that

contained the word.

http://www.it-ebooks.info/


20 CHAPTER 1 Hadoop in a heartbeat

The last step is to write the driver code that will set all the necessary properties to con-
figure the MapReduce job to run. You need to let the framework know what classes
should be used for the map and reduce functions, and also let it know where the input
and output data is located. By default, MapReduce assumes you’re working with text;
if you’re working with more complex text structures, or altogether different data-
storage technologies, you’ll need to tell MapReduce how it should read and write
from these data sources and sinks. The following source shows the full driver code:18

public int run(final String[] args) throws Exception {

Cli cli = Cli.builder().setArgs(args)
.addOptions(IOOptions.values()).build();

cli.runCmd();

Path input = new Path(cli.getArgValueAsString(IOOptions.INPUT));
Path output = new Path(cli.getArgValueAsString(IOOptions.OUTPUT));

Configuration conf = super.getConf();

Job job = new Job(conf);
job.setJarByClass(InvertedIndexJob.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, output);

if (job.waitForCompletion(true)) {
System.out.println("Job completed successfully.");

return 0;
}
return 1;

}

Let’s see how this code works. First, you need to create two simple input files in HDFS:

$ hadoop fs -mkdir -p hip1/input
$ echo "cat sat mat" | hadoop fs -put - hip1/input/1.txt
$ echo "dog lay mat" | hadoop fs -put - hip1/input/2.txt

Next, run the MapReduce code. You’ll use a shell script to run it, supplying the two
input files as arguments, along with the job output directory:

$ hip hip.ch1.InvertedIndexJob --input hip1/input --output hip1/output

18 GitHub source: https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/
InvertedIndexJob.java.

Extract the input and
output directories from

the arguments.
Get a handle for the 
Configuration instance 
for the job.

The Job class’s setJarByClass informs
MapReduce that the supplied class should

be used to determine the encapsulating
JAR, which in turn is added to the

classpath of all your map and reduce tasks.

Set the Map class 
that should be used 
for the job.

Set the Reduce 
class that should be 
used for the job.

If the map output key/value types differ
from the input types, you must tell

Hadoop what they are. Here, the map will
output each word and file as key/value

pairs, and both are Text objects.
Set the map 
output value class.

Set the HDFS input 
directory for the job. Set the HDFS

output directory
for the job.Tell the framework to run 

the job and block until the 
job has completed.

Create two files in
HDFS to serve as

inputs for the job.

https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/InvertedIndexJob.java
https://github.com/alexholmes/hiped2/blob/master/src/main/java/hip/ch1/InvertedIndexJob.java
http://www.it-ebooks.info/


21Chapter summary

Executing code examples in the book The appendix contains instructions for
downloading and installing the binaries and code that accompany this book.
Most of the examples are launched via the hip script, which is located inside the
bin directory. For convenience, it’s recommended that you add the book’s bin
directory to your path so that you can copy-paste all the example commands as
is. The appendix has instructions on how to set up your environment.

When your job completes, you can examine HDFS for the job output files and view
their contents:

$ hadoop fs -ls output/
Found 3 items
output/_SUCCESS
output/_logs
output/part-r-00000

$ hadoop fs -cat output/part*
cat 1.txt
dog 2.txt
lay 2.txt
mat 2.txt,1.txt
sat 1.txt

This completes your whirlwind tour of how to run Hadoop. 

1.3 Chapter summary
Hadoop is a distributed system designed to process, generate, and store large datasets.
Its MapReduce implementation provides you with a fault-tolerant mechanism for large-
scale data analysis of heterogeneous structured and unstructured data sources, and
YARN now supports multi-tenant disparate applications on the same Hadoop cluster.

 In this chapter, we examined Hadoop from both functional and physical architec-
tural standpoints. You also installed Hadoop and ran a MapReduce job. 

 The remainder of this book is dedicated to presenting real-world techniques for
solving common problems you’ll encounter when working with Hadoop. You’ll be
introduced to a broad spectrum of subject areas, starting with YARN, HDFS and
MapReduce, and Hive. You’ll also look at data-analysis techniques and explore tech-
nologies such as Mahout and Rhipe. 

 In chapter 2, the first stop on your journey, you’ll discover YARN, which heralds a
new era for Hadoop, one that transforms Hadoop into a distributed processing ker-
nel. Without further ado, let’s get started.

http://www.it-ebooks.info/

	Hadoop in Practice, Second Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	What’s new in the second edition?
	Getting help
	Code conventions and downloads
	Third-party libraries
	Datasets
	NASDAQ financial stocks
	Apache log data
	Names
	Author Online

	about the cover illustration
	Part 1: Background and fundamentals
	Chapter 1: Hadoop in a heartbeat
	1.1 What is Hadoop?
	1.1.1 Core Hadoop components
	1.1.2 The Hadoop ecosystem
	1.1.3 Hardware requirements
	1.1.4 Hadoop distributions
	1.1.5 Who’s using Hadoop?
	1.1.6 Hadoop limitations

	1.2 Getting your hands dirty with MapReduce
	1.3 Chapter summary

	Chapter 2: Introduction to YARN
	2.1 YARN overview
	2.1.1 Why YARN?
	2.1.2 YARN concepts and components
	2.1.3 YARN configuration
	Technique 1: Determining the configuration of your cluster
	2.1.4 Interacting with YARN
	Technique 2: Running a command on your YARN cluster
	Technique 3: Accessing container logs
	Technique 4: Aggregating container log files
	2.1.5 YARN challenges

	2.2 YARN and MapReduce
	2.2.1 Dissecting a YARN MapReduce application
	2.2.2 Configuration
	2.2.3 Backward compatibility
	Technique 5: Writing code that works on Hadoop versions 1 and 2
	2.2.4 Running a job
	Technique 6: Using the command line to run a job
	2.2.5 Monitoring running jobs and viewing archived jobs
	2.2.6 Uber jobs
	Technique 7: Running small MapReduce jobs

	2.3 YARN applications
	2.3.1 NoSQL
	2.3.2 Interactive SQL
	2.3.3 Graph processing
	2.3.4 Real-time data processing
	2.3.5 Bulk synchronous parallel
	2.3.6 MPI
	2.3.7 In-memory
	2.3.8 DAG execution

	2.4 Chapter summary


	Part 2: Data logistics
	Chapter 3: Data serialization— working with text and beyond
	3.1 Understanding inputs and outputs in MapReduce
	3.1.1 Data input
	3.1.2 Data output

	3.2 Processing common serialization formats
	3.2.1 XML
	Technique 8: MapReduce and XML
	3.2.2 JSON
	Technique 9: MapReduce and JSON

	3.3 Big data serialization formats
	3.3.1 Comparing SequenceFile, Protocol Buffers, Thrift, and Avro
	3.3.2 SequenceFile
	Technique 10: Working with SequenceFiles
	Technique 11: Using SequenceFiles to encode Protocol Buffers
	3.3.3 Protocol Buffers
	3.3.4 Thrift
	3.3.5 Avro
	Technique 12: Avro’s schema and code generation
	Technique 13: Selecting the appropriate way to use Avro in MapReduce
	Technique 14: Mixing Avro and non-Avro data in MapReduce
	Technique 15: Using Avro records in MapReduce
	Technique 16: Using Avro key/value pairs in MapReduce
	Technique 17: Controlling how sorting worksin MapReduce
	Technique 18: Avro and Hive
	Technique 19: Avro and Pig

	3.4 Columnar storage
	3.4.1 Understanding object models and storage formats
	3.4.2 Parquet and the Hadoop ecosystem
	3.4.3 Parquet block and page sizes
	Technique 20: Reading Parquet files via the command line
	Technique 21: Reading and writing Avro data in Parquet with Java
	Technique 22: Parquet and MapReduce
	Technique 23: Parquet and Hive/Impala
	Technique 24: Pushdown predicates and projection with Parquet
	3.4.4 Parquet limitations

	3.5 Custom file formats
	3.5.1 Input and output formats
	Technique 25: Writing input and output formats for CSV
	3.5.2 The importance of output committing

	3.6 Chapter summary

	Chapter 4: Organizing and optimizing data in HDFS
	4.1 Data organization
	4.1.1 Directory and file layout
	4.1.2 Data tiers
	4.1.3 Partitioning
	Technique 26: Using MultipleOutputs to partition your data
	Technique 27: Using a custom MapReduce partitioner
	4.1.4 Compacting
	Technique 28: Using filecrush to compact data
	Technique 29: Using Avro to store multiple small binary files
	4.1.5 Atomic data movement

	4.2 Efficient storage with compression
	Technique 30: Picking the right compression codec for your data
	Technique 31: Compression with HDFS, MapReduce, Pig, and Hive
	Technique 32: Splittable LZOP with MapReduce, Hive, and Pig

	4.3 Chapter summary

	Chapter 5: Moving data into and out of Hadoop
	5.1 Key elements of data movement
	5.2 Moving data into Hadoop
	5.2.1 Roll your own ingest
	Technique 33: Using the CLI to load files
	Technique 34: Using REST to load files
	Technique 35: Accessing HDFS from behind a firewall
	Technique 36: Mounting Hadoop with NFS
	Technique 37: Using DistCp to copy data within and between clusters
	Technique 38: Using Java to load files
	5.2.2 Continuous movement of log and binary files into HDFS
	Technique 39: Pushing system log messages into HDFS with Flume
	Technique 40: An automated mechanism to copy files into HDFS
	Technique 41: Scheduling regular ingress activities with Oozie
	5.2.3 Databases
	Technique 42: Using Sqoop to import data from MySQL
	5.2.4 HBase
	Technique 43: HBase ingress into HDFS
	Technique 44: MapReduce with HBase as a data source
	5.2.5 Importing data from Kafka
	Technique 45: Using Camus to copy Avro data from Kafka into HDFS

	5.3 Moving data out of Hadoop
	5.3.1 Roll your own egress
	Technique 46: Using the CLI to extract files
	Technique 47: Using REST to extract files
	Technique 48: Reading from HDFS when behind a firewall
	Technique 49: Mounting Hadoop with NFS
	Technique 50: Using DistCp to copy data out of Hadoop
	Technique 51: Using Java to extract files
	5.3.2 Automated file egress
	Technique 52: An automated mechanism to export files from HDFS
	5.3.3 Databases
	Technique 53: Using Sqoop to export data to MySQL
	5.3.4 NoSQL

	5.4 Chapter summary


	Part 3: Big data patterns
	Chapter 6: Applying MapReduce patterns to big data
	6.1 Joining
	Technique 54: Picking the best join strategy for your data
	Technique 55: Filters, projections, and pushdowns
	6.1.1 Map-side joins
	Technique 56: Joining data where one dataset can fit into memory
	Technique 57: Performing a semi-join on large datasets
	Technique 58: Joining on presorted and prepartitioned data
	6.1.2 Reduce-side joins
	Technique 59: A basic repartition join
	Technique 60: Optimizing the repartition join
	Technique 61: Using Bloom filters to cut down on shuffled data
	6.1.3 Data skew in reduce-side joins
	Technique 62: Joining large datasets with high join-key cardinality
	Technique 63: Handling skews generated by the hash partitioner

	6.2 Sorting
	6.2.1 Secondary sort
	Technique 64: Implementing a secondary sort
	6.2.2 Total order sorting
	Technique 65: Sorting keys across multiple reducers

	6.3 Sampling
	Technique 66: Writing a reservoir-sampling InputFormat

	6.4 Chapter summary

	Chapter 7: Utilizing data structures and algorithms at scale
	7.1 Modeling data and solving problems with graphs
	7.1.1 Modeling graphs
	7.1.2 Shortest-path algorithm
	Technique 67: Find the shortest distance between two users
	7.1.3 Friends-of-friends algorithm
	Technique 68: Calculating FoFs
	7.1.4 Using Giraph to calculate PageRank over a web graph
	Technique 69: Calculate PageRank over a web graph

	7.2 Bloom filters
	Technique 70: Parallelized Bloom filter creation in MapReduce

	7.3 HyperLogLog
	7.3.1 A brief introduction to HyperLogLog
	Technique 71: Using HyperLogLog to calculate unique counts

	7.4 Chapter summary

	Chapter 8: Tuning, debugging, and testing
	8.1 Measure, measure, measure
	8.2 Tuning MapReduce
	8.2.1 Common inefficiencies in MapReduce jobs
	Technique 72: Viewing job statistics
	8.2.2 Map optimizations
	Technique 73: Data locality
	Technique 74: Dealing with a large number of input splits
	Technique 75: Generating input splits in the cluster with YARN
	8.2.3 Shuffle optimizations
	Technique 76: Using the combiner
	Technique 77: Blazingly fast sorting with binary comparators
	Technique 78: Tuning the shuffle internals
	8.2.4 Reducer optimizations
	Technique 79: Too few or too many reducers
	8.2.5 General tuning tips
	Technique 80: Using stack dumps to discover unoptimized user code
	Technique 81: Profiling your map and reduce tasks

	8.3 Debugging
	8.3.1 Accessing container log output
	Technique 82: Examining task logs
	8.3.2 Accessing container start scripts
	Technique 83: Figuring out the container startup command
	8.3.3 Debugging OutOfMemory errors
	Technique 84: Force container JVMs to generate a heap dump
	8.3.4 MapReduce coding guidelines for effective debugging
	Technique 85: Augmenting MapReduce code for better debugging

	8.4 Testing MapReduce jobs
	8.4.1 Essential ingredients for effective unit testing
	8.4.2 MRUnit
	Technique 86: Using MRUnit to unit-test MapReduce
	8.4.3 LocalJobRunner
	Technique 87: Heavyweight job testing with the LocalJobRunner
	8.4.4 MiniMRYarnCluster
	Technique 88: Using MiniMRYarnCluster to test your jobs
	8.4.5 Integration and QA testing

	8.5 Chapter summary


	Part 4: Beyond MapReduce
	Chapter 9: SQL on Hadoop
	9.1 Hive
	9.1.1 Hive basics
	9.1.2 Reading and writing data
	Technique 89: Working with text files
	Technique 90: Exporting data to local disk
	9.1.3 User-defined functions in Hive
	Technique 91: Writing UDFs
	9.1.4 Hive performance
	Technique 92: Partitioning
	Technique 93: Tuning Hive joins

	9.2 Impala
	9.2.1 Impala vs. Hive
	9.2.2 Impala basics
	Technique 94: Working with text
	Technique 95: Working with Parquet
	Technique 96: Refreshing metadata
	9.2.3 User-defined functions in Impala
	Technique 97: Executing Hive UDFs in Impala

	9.3 Spark SQL
	Technique 98: Calculating stock averages with Spark SQL
	Technique 99: Language-integrated queries
	Technique 100: Hive and Spark SQL
	9.3.1 Spark 101
	9.3.2 Spark on Hadoop
	9.3.3 SQL with Spark

	9.4 Chapter summary

	Chapter 10: Writing a YARN application
	10.1 Fundamentals of building a YARN application
	10.1.1 Actors
	10.1.2 The mechanics of a YARN application

	10.2 Building a YARN application to collect cluster statistics
	Technique 101: A bare-bones YARN client
	Technique 102: A bare-bones ApplicationMaster
	Technique 103: Running the application and accessing logs
	Technique 104: Debugging using an unmanaged application master

	10.3 Additional YARN application capabilities
	10.3.1 RPC between components
	10.3.2 Service discovery
	10.3.3 Checkpointing application progress
	10.3.4 Avoiding split-brain
	10.3.5 Long-running applications
	10.3.6 Security

	10.4 YARN programming abstractions
	10.4.1 Twill
	10.4.2 Spring
	10.4.3 REEF
	10.4.4 Picking a YARN API abstraction

	10.5 Chapter summary


	appendix: Installing Hadoop and friends
	A.1 Code for the book
	A.2 Recommended Java versions
	A.3 Hadoop
	Apache tarball installation
	Hadoop 1.x UI ports
	Hadoop 2.x UI ports

	A.4 Flume
	Getting more information
	Installation on Apache Hadoop 1.x systems
	Installation on Apache Hadoop 2.x systems

	A.5 Oozie
	Getting more information
	Installation on Hadoop 1.x systems
	Installation on Hadoop 2.x systems

	A.6 Sqoop
	Getting more information
	Installation

	A.7 HBase
	Getting more information
	Installation

	A.8 Kafka
	Getting more information
	Installation

	A.9 Camus
	Getting more information
	Installation on Hadoop 1
	Installation on Hadoop 2

	A.10 Avro
	Getting more information
	Installation

	A.11 Apache Thrift
	Getting more information
	Building Thrift 0.7

	A.12 Protocol Buffers
	Getting more information
	Building Protocol Buffers

	A.13 Snappy
	Getting more information

	A.14 LZOP
	Getting more information
	Building LZOP

	A.15 Elephant Bird
	Getting more information

	A.16 Hive
	Getting more information
	Installation

	A.17 R
	Getting more information
	Installation on Red Hat–based systems
	Installation on non–Red Hat systems

	A.18 RHadoop
	Getting more information
	rmr/rhdfs installation

	A.19 Mahout
	Getting more information
	Installation


	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


