
CHAPTER 1

Hadoop Distributed File System
(HDFS)

The Hadoop Distributed File System (HDFS) is a Java-based dis‐
tributed, scalable, and portable filesystem designed to span large
clusters of commodity servers. The design of HDFS is based on GFS,
the Google File System, which is described in a paper published by
Google. Like many other distributed filesystems, HDFS holds a large
amount of data and provides transparent access to many clients dis‐
tributed across a network. Where HDFS excels is in its ability to
store very large files in a reliable and scalable manner.

HDFS is designed to store a lot of information, typically petabytes
(for very large files), gigabytes, and terabytes. This is accomplished
by using a block-structured filesystem. Individual files are split into
fixed-size blocks that are stored on machines across the cluster. Files
made of several blocks generally do not have all of their blocks
stored on a single machine.

HDFS ensures reliability by replicating blocks and distributing the
replicas across the cluster. The default replication factor is three,
meaning that each block exists three times on the cluster. Block-level
replication enables data availability even when machines fail.

This chapter begins by introducing the core concepts of HDFS and
explains how to interact with the filesystem using the native built-in
commands. After a few examples, a Python client library is intro‐
duced that enables HDFS to be accessed programmatically from
within Python applications.

1

http://research.google.com/archive/gfs.html

Overview of HDFS
The architectural design of HDFS is composed of two processes: a
process known as the NameNode holds the metadata for the filesys‐
tem, and one or more DataNode processes store the blocks that
make up the files. The NameNode and DataNode processes can run
on a single machine, but HDFS clusters commonly consist of a dedi‐
cated server running the NameNode process and possibly thousands
of machines running the DataNode process.

The NameNode is the most important machine in HDFS. It stores
metadata for the entire filesystem: filenames, file permissions, and
the location of each block of each file. To allow fast access to this
information, the NameNode stores the entire metadata structure in
memory. The NameNode also tracks the replication factor of blocks,
ensuring that machine failures do not result in data loss. Because the
NameNode is a single point of failure, a secondary NameNode can
be used to generate snapshots of the primary NameNode’s memory
structures, thereby reducing the risk of data loss if the NameNode
fails.

The machines that store the blocks within HDFS are referred to as
DataNodes. DataNodes are typically commodity machines with
large storage capacities. Unlike the NameNode, HDFS will continue
to operate normally if a DataNode fails. When a DataNode fails, the
NameNode will replicate the lost blocks to ensure each block meets
the minimum replication factor.

The example in Figure 1-1 illustrates the mapping of files to blocks
in the NameNode, and the storage of blocks and their replicas
within the DataNodes.

The following section describes how to interact with HDFS using
the built-in commands.

2 | Chapter 1: Hadoop Distributed File System (HDFS)

Figure 1-1. An HDFS cluster with a replication factor of two; the
NameNode contains the mapping of !les to blocks, and the DataNodes
store the blocks and their replicas

Interacting with HDFS
Interacting with HDFS is primarily performed from the command
line using the script named hdfs. The hdfs script has the following
usage:

$ hdfs COMMAND [-option <arg>]

The COMMAND argument instructs which functionality of HDFS will
be used. The -option argument is the name of a specific option for
the specified command, and <arg> is one or more arguments that
that are specified for this option.

Common File Operations
To perform basic file manipulation operations on HDFS, use the dfs
command with the hdfs script. The dfs command supports many
of the same file operations found in the Linux shell.

It is important to note that the hdfs command runs with the per‐
missions of the system user running the command. The following
examples are run from a user named “hduser.”

List Directory Contents
To list the contents of a directory in HDFS, use the -ls command:

$ hdfs dfs -ls
$

Interacting with HDFS | 3

Running the -ls command on a new cluster will not return any
results. This is because the -ls command, without any arguments,
will attempt to display the contents of the user’s home directory on
HDFS. This is not the same home directory on the host machine
(e.g., /home/$USER), but is a directory within HDFS.

Providing -ls with the forward slash (/) as an argument displays
the contents of the root of HDFS:

$ hdfs dfs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2015-09-20 14:36 /hadoop
drwx------ - hadoop supergroup 0 2015-09-20 14:36 /tmp

The output provided by the hdfs dfs command is similar to the
output on a Unix filesystem. By default, -ls displays the file and
folder permissions, owners, and groups. The two folders displayed
in this example are automatically created when HDFS is formatted.
The hadoop user is the name of the user under which the Hadoop
daemons were started (e.g., NameNode and DataNode), and the
supergroup is the name of the group of superusers in HDFS (e.g.,
hadoop).

Creating a Directory
Home directories within HDFS are stored in /user/$HOME. From
the previous example with -ls, it can be seen that the /user directory
does not currently exist. To create the /user directory within HDFS,
use the -mkdir command:

$ hdfs dfs -mkdir /user

To make a home directory for the current user, hduser, use the
-mkdir command again:

$ hdfs dfs -mkdir /user/hduser

Use the -ls command to verify that the previous directories were
created:

$ hdfs dfs -ls -R /user
drwxr-xr-x - hduser supergroup 0 2015-09-22 18:01 /user/
hduser

4 | Chapter 1: Hadoop Distributed File System (HDFS)

Copy Data onto HDFS
After a directory has been created for the current user, data can be
uploaded to the user’s HDFS home directory with the -put com‐
mand:

$ hdfs dfs -put /home/hduser/input.txt /user/hduser

This command copies the file /home/hduser/input.txt from the local
filesystem to /user/hduser/input.txt on HDFS.

Use the -ls command to verify that input.txt was moved to HDFS:
$ hdfs dfs -ls
Found 1 items
-rw-r--r-- 1 hduser supergroup 52 2015-09-20 13:20
input.txt

Retrieving Data from HDFS
Multiple commands allow data to be retrieved from HDFS. To sim‐
ply view the contents of a file, use the -cat command. -cat reads a
file on HDFS and displays its contents to stdout. The following com‐
mand uses -cat to display the contents of /user/hduser/input.txt:

$ hdfs dfs -cat input.txt
jack be nimble
jack be quick
jack jumped over the candlestick

Data can also be copied from HDFS to the local filesystem using the
-get command. The -get command is the opposite of the -put
command:

$ hdfs dfs -get input.txt /home/hduser

This command copies input.txt from /user/hduser on HDFS
to /home/hduser on the local filesystem.

HDFS Command Reference
The commands demonstrated in this section are the basic file opera‐
tions needed to begin using HDFS. Below is a full listing of file
manipulation commands possible with hdfs dfs. This listing can
also be displayed from the command line by specifying hdfs dfs
without any arguments. To get help with a specific option, use either
hdfs dfs -usage <option> or hdfs dfs -help <option>.

Interacting with HDFS | 5

Usage: hadoop fs [generic options]
 [-appendToFile <localsrc> ... <dst>]
 [-cat [-ignoreCrc] <src> ...]
 [-checksum <src> ...]
 [-chgrp [-R] GROUP PATH...]
 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
 [-chown [-R] [OWNER][:[GROUP]] PATH...]
 [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
 [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ...
<localdst>]
 [-count [-q] [-h] <path> ...]
 [-cp [-f] [-p | -p[topax]] <src> ... <dst>]
 [-createSnapshot <snapshotDir> [<snapshotName>]]
 [-deleteSnapshot <snapshotDir> <snapshotName>]
 [-df [-h] [<path> ...]]
 [-du [-s] [-h] <path> ...]
 [-expunge]
 [-find <path> ... <expression> ...]
 [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
 [-getfacl [-R] <path>]
 [-getfattr [-R] {-n name | -d} [-e en] <path>]
 [-getmerge [-nl] <src> <localdst>]
 [-help [cmd ...]]
 [-ls [-d] [-h] [-R] [<path> ...]]
 [-mkdir [-p] <path> ...]
 [-moveFromLocal <localsrc> ... <dst>]
 [-moveToLocal <src> <localdst>]
 [-mv <src> ... <dst>]
 [-put [-f] [-p] [-l] <localsrc> ... <dst>]
 [-renameSnapshot <snapshotDir> <oldName> <newName>]
 [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
 [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
 [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set
<acl_spec> <path>]]
 [-setfattr {-n name [-v value] | -x name} <path>]
 [-setrep [-R] [-w] <rep> <path> ...]
 [-stat [format] <path> ...]
 [-tail [-f] <file>]
 [-test -[defsz] <path>]
 [-text [-ignoreCrc] <src> ...]
 [-touchz <path> ...]
 [-truncate [-w] <length> <path> ...]
 [-usage [cmd ...]]

Generic options supported are
-conf <configuration file> specify an application configu-
ration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|resourcemanager:port> specify a ResourceManager
-files <comma separated list of files> specify comma separa-

6 | Chapter 1: Hadoop Distributed File System (HDFS)

ted files to be copied to the map reduce cluster
-libjars <comma separated list of jars> specify comma sepa-
rated jar files to include in the classpath.
-archives <comma separated list of archives> specify comma
separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

The next section introduces a Python library that allows HDFS to be
accessed from within Python applications.

Snakebite
Snakebite is a Python package, created by Spotify, that provides a
Python client library, allowing HDFS to be accessed programmati‐
cally from Python applications. The client library uses protobuf
messages to communicate directly with the NameNode. The Snake‐
bite package also includes a command-line interface for HDFS that
is based on the client library.

This section describes how to install and configure the Snakebite
package. Snakebite’s client library is explained in detail with multiple
examples, and Snakebite’s built-in CLI is introduced as a Python
alternative to the hdfs dfs command.

Installation
Snakebite requires Python 2 and python-protobuf 2.4.1 or higher.
Python 3 is currently not supported.

Snakebite is distributed through PyPI and can be installed using
pip:

$ pip install snakebite

Client Library
The client library is written in Python, uses protobuf messages, and
implements the Hadoop RPC protocol for talking to the NameNode.
This enables Python applications to communicate directly with
HDFS and not have to make a system call to hdfs dfs.

List Directory Contents
Example 1-1 uses the Snakebite client library to list the contents of
the root directory in HDFS.

Snakebite | 7

Example 1-1. python/HDFS/list_directory.py

from snakebite.client import Client

client = Client('localhost', 9000)
for x in client.ls(['/']):
 print x

The most important line of this program, and every program that
uses the client library, is the line that creates a client connection to
the HDFS NameNode:

client = Client('localhost', 9000)

The Client() method accepts the following parameters:

host (string)
Hostname or IP address of the NameNode

port (int)
RPC port of the NameNode

hadoop_version (int)
The Hadoop protocol version to be used (default: 9)

use_trash (boolean)
Use trash when removing files

effective_use (string)
Effective user for the HDFS operations (default: None or cur‐
rent user)

The host and port parameters are required and their values are
dependent upon the HDFS configuration. The values for these
parameters can be found in the hadoop/conf/core-site.xml configura‐
tion file under the property fs.defaultFS:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:9000</value>
</property>

For the examples in this section, the values used for host and port
are localhost and 9000, respectively.

After the client connection is created, the HDFS filesystem can be
accessed. The remainder of the previous application used the ls
command to list the contents of the root directory in HDFS:

8 | Chapter 1: Hadoop Distributed File System (HDFS)

for x in client.ls(['/']):
 print x

It is important to note that many of methods in Snakebite return
generators. Therefore they must be consumed to execute. The ls
method takes a list of paths and returns a list of maps that contain
the file information.

Executing the list_directory.py application yields the following
results:

$ python list_directory.py
{'group': u'supergroup', 'permission': 448, 'file_type': 'd',
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442752574936L, 'length': 0L, 'blocksize': 0L,
'owner': u'hduser', 'path': '/tmp'}
{'group': u'supergroup', 'permission': 493, 'file_type': 'd',
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442742056276L, 'length': 0L, 'blocksize': 0L,
'owner': u'hduser', 'path': '/user'}

Create a Directory
Use the mkdir() method to create directories on HDFS.
Example 1-2 creates the directories /foo/bar and /input on HDFS.

Example 1-2. python/HDFS/mkdir.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.mkdir(['/foo/bar', '/input'], create_parent=True):
 print p

Executing the mkdir.py application produces the following results:
$ python mkdir.py
{'path': '/foo/bar', 'result': True}
{'path': '/input', 'result': True}

The mkdir() method takes a list of paths and creates the specified
paths in HDFS. This example used the create_parent parameter to
ensure that parent directories were created if they did not already
exist. Setting create_parent to True is analogous to the mkdir -p
Unix command.

Snakebite | 9

Deleting Files and Directories
Deleting files and directories from HDFS can be accomplished with
the delete() method. Example 1-3 recursively deletes the /foo
and /bar directories, created in the previous example.

Example 1-3. python/HDFS/delete.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.delete(['/foo', '/input'], recurse=True):
 print p

Executing the delete.py application produces the following results:
$ python delete.py
{'path': '/foo', 'result': True}
{'path': '/input', 'result': True}

Performing a recursive delete will delete any subdirectories and files
that a directory contains. If a specified path cannot be found, the
delete method throws a FileNotFoundException. If recurse is not
specified and a subdirectory or file exists, DirectoryException is
thrown.

The recurse parameter is equivalent to rm -rf and should be used
with care.

Retrieving Data from HDFS
Like the hdfs dfs command, the client library contains multiple
methods that allow data to be retrieved from HDFS. To copy files
from HDFS to the local filesystem, use the copyToLocal() method.
Example 1-4 copies the file /input/input.txt from HDFS and places it
under the /tmp directory on the local filesystem.

Example 1-4. python/HDFS/copy_to_local.py

from snakebite.client import Client

client = Client('localhost', 9000)
for f in client.copyToLocal(['/input/input.txt'], '/tmp'):
 print f

Executing the copy_to_local.py application produces the following
result:

10 | Chapter 1: Hadoop Distributed File System (HDFS)

$ python copy_to_local.py
{'path': '/tmp/input.txt', 'source_path': '/input/input.txt',
'result': True, 'error': ''}

To simply read the contents of a file that resides on HDFS, the
text() method can be used. Example 1-5 displays the content
of /input/input.txt.

Example 1-5. python/HDFS/text.py

from snakebite.client import Client

client = Client('localhost', 9000)
for l in client.text(['/input/input.txt']):
 print l

Executing the text.py application produces the following results:
$ python text.py
jack be nimble
jack be quick
jack jumped over the candlestick

The text() method will automatically uncompress and display gzip
and bzip2 files.

CLI Client
The CLI client included with Snakebite is a Python command-line
HDFS client based on the client library. To execute the Snakebite
CLI, the hostname or IP address of the NameNode and RPC port of
the NameNode must be specified. While there are many ways to
specify these values, the easiest is to create a ~.snakebiterc configura‐
tion file. Example 1-6 contains a sample config with the NameNode
hostname of localhost and RPC port of 9000.

Example 1-6. ~/.snakebiterc

{
 "config_version": 2,
 "skiptrash": true,
 "namenodes": [
 {"host": "localhost", "port": 9000, "version": 9},
]
}

Snakebite | 11

The values for host and port can be found in the hadoop/conf/core-
site.xml configuration file under the property fs.defaultFS.

For more information on configuring the CLI, see the Snakebite CLI
documentation online.

Usage
To use the Snakebite CLI client from the command line, simply use
the command snakebite. Use the ls option to display the contents
of a directory:

$ snakebite ls /
Found 2 items
drwx------ - hadoop supergroup 0 2015-09-20 14:36 /tmp
drwxr-xr-x - hadoop supergroup 0 2015-09-20 11:40 /user

Like the hdfs dfs command, the CLI client supports many familiar
file manipulation commands (e.g., ls, mkdir, df, du, etc.).

The major difference between snakebite and hdfs dfs is that
snakebite is a pure Python client and does not need to load any
Java libraries to communicate with HDFS. This results in quicker
interactions with HDFS from the command line.

CLI Command Reference
The following is a full listing of file manipulation commands possi‐
ble with the snakebite CLI client. This listing can be displayed from
the command line by specifying snakebite without any arguments.
To view help with a specific command, use snakebite [cmd] --
help, where cmd is a valid snakebite command.

snakebite [general options] cmd [arguments]
general options:
 -D --debug Show debug information
 -V --version Hadoop protocol version (default:9)
 -h --help show help
 -j --json JSON output
 -n --namenode namenode host
 -p --port namenode RPC port (default: 8020)
 -v --ver Display snakebite version

commands:
 cat [paths] copy source paths to stdout
 chgrp <grp> [paths] change group
 chmod <mode> [paths] change file mode (octal)
 chown <owner:grp> [paths] change owner
 copyToLocal [paths] dst copy paths to local

12 | Chapter 1: Hadoop Distributed File System (HDFS)

http://snakebite.readthedocs.org/en/latest/
http://snakebite.readthedocs.org/en/latest/

 file system destination
 count [paths] display stats for paths
 df display fs stats
 du [paths] display disk usage statistics
 get file dst copy files to local
 file system destination
 getmerge dir dst concatenates files in source dir
 into destination local file
 ls [paths] list a path
 mkdir [paths] create directories
 mkdirp [paths] create directories and their
 parents
 mv [paths] dst move paths to destination
 rm [paths] remove paths
 rmdir [dirs] delete a directory
 serverdefaults show server information
 setrep <rep> [paths] set replication factor
 stat [paths] stat information
 tail path display last kilobyte of the
 file to stdout
 test path test a path
 text path [paths] output file in text format
 touchz [paths] creates a file of zero length
 usage <cmd> show cmd usage

to see command-specific options use: snakebite [cmd] --help

Chapter Summary
This chapter introduced and described the core concepts of HDFS.
It explained how to interact with the filesystem using the built-in
hdfs dfs command. It also introduced the Python library, Snake‐
bite. Snakebite’s client library was explained in detail with multiple
examples. The snakebite CLI was also introduced as a Python alter‐
native to the hdfs dfs command.

Chapter Summary | 13

CHAPTER 2

MapReduce with Python

MapReduce is a programming model that enables large volumes of
data to be processed and generated by dividing work into independ‐
ent tasks and executing the tasks in parallel across a cluster of
machines. The MapReduce programming style was inspired by the
functional programming constructs map and reduce, which are
commonly used to process lists of data. At a high level, every Map‐
Reduce program transforms a list of input data elements into a list
of output data elements twice, once in the map phase and once in
the reduce phase.

This chapter begins by introducing the MapReduce programming
model and describing how data flows through the different phases
of the model. Examples then show how MapReduce jobs can be
written in Python.

Data Flow
The MapReduce framework is composed of three major phases:
map, shuffle and sort, and reduce. This section describes each phase
in detail.

Map
The first phase of a MapReduce application is the map phase.
Within the map phase, a function (called the mapper) processes a
series of key-value pairs. The mapper sequentially processes each

15

key-value pair individually, producing zero or more output key-
value pairs (Figure 2-1).

Figure 2-1. "e mapper is applied to each input key-value pair, pro‐
ducing an output key-value pair

As an example, consider a mapper whose purpose is to transform
sentences into words. The input to this mapper would be strings that
contain sentences, and the mapper’s function would be to split the
sentences into words and output the words (Figure 2-2).

Figure 2-2. "e input of the mapper is a string, and the function of the
mapper is to split the input on spaces; the resulting output is the indi‐
vidual words from the mapper’s input

16 | Chapter 2: MapReduce with Python

Shu!e and Sort
The second phase of MapReduce is the shuffle and sort. As the map‐
pers begin completing, the intermediate outputs from the map
phase are moved to the reducers. This process of moving output
from the mappers to the reducers is known as shuffling.

Shuffling is handled by a partition function, known as the parti‐
tioner. The partitioner is used to control the flow of key-value pairs
from mappers to reducers. The partitioner is given the mapper’s
output key and the number of reducers, and returns the index of the
intended reducer. The partitioner ensures that all of the values for
the same key are sent to the same reducer. The default partitioner is
hash-based. It computes a hash value of the mapper’s output key and
assigns a partition based on this result.

The final stage before the reducers start processing data is the sort‐
ing process. The intermediate keys and values for each partition are
sorted by the Hadoop framework before being presented to the
reducer.

Reduce
The third phase of MapReduce is the reduce phase. Within the
reducer phase, an iterator of values is provided to a function known
as the reducer. The iterator of values is a nonunique set of values for
each unique key from the output of the map phase. The reducer
aggregates the values for each unique key and produces zero or
more output key-value pairs (Figure 2-3).

Data Flow | 17

Figure 2-3. "e reducer iterates over the input values, producing an
output key-value pair

As an example, consider a reducer whose purpose is to sum all of
the values for a key. The input to this reducer is an iterator of all of
the values for a key, and the reducer sums all of the values. The
reducer then outputs a key-value pair that contains the input key
and the sum of the input key values (Figure 2-4).

Figure 2-4. "is reducer sums the values for the keys “cat” and “mouse”

The next section describes a simple MapReduce application and its
implementation in Python.

Hadoop Streaming
Hadoop streaming is a utility that comes packaged with the Hadoop
distribution and allows MapReduce jobs to be created with any exe‐
cutable as the mapper and/or the reducer. The Hadoop streaming
utility enables Python, shell scripts, or any other language to be used
as a mapper, reducer, or both.

18 | Chapter 2: MapReduce with Python

How It Works
The mapper and reducer are both executables that read input, line
by line, from the standard input (stdin), and write output to the
standard output (stdout). The Hadoop streaming utility creates a
MapReduce job, submits the job to the cluster, and monitors its pro‐
gress until it is complete.

When the mapper is initialized, each map task launches the specified
executable as a separate process. The mapper reads the input file and
presents each line to the executable via stdin. After the executable
processes each line of input, the mapper collects the output from
stdout and converts each line to a key-value pair. The key consists of
the part of the line before the first tab character, and the value con‐
sists of the part of the line after the first tab character. If a line con‐
tains no tab character, the entire line is considered the key and the
value is null.

When the reducer is initialized, each reduce task launches the speci‐
fied executable as a separate process. The reducer converts the input
key-value pair to lines that are presented to the executable via stdin.
The reducer collects the executables result from stdout and converts
each line to a key-value pair. Similar to the mapper, the executable
specifies key-value pairs by separating the key and value by a tab
character.

A Python Example
To demonstrate how the Hadoop streaming utility can run Python
as a MapReduce application on a Hadoop cluster, the WordCount
application can be implemented as two Python programs: mapper.py
and reducer.py.

mapper.py is the Python program that implements the logic in the
map phase of WordCount. It reads data from stdin, splits the lines
into words, and outputs each word with its intermediate count to
stdout. The code in Example 2-1 implements the logic in mapper.py.

Example 2-1. python/MapReduce/HadoopStreaming/mapper.py

#!/usr/bin/env python

import sys

Read each line from stdin

Hadoop Streaming | 19

for line in sys.stdin:

 # Get the words in each line
 words = line.split()

 # Generate the count for each word
 for word in words:

 # Write the key-value pair to stdout to be processed by
 # the reducer.
 # The key is anything before the first tab character and the
 #value is anything after the first tab character.
 print '{0}\t{1}'.format(word, 1)

reducer.py is the Python program that implements the logic in the
reduce phase of WordCount. It reads the results of mapper.py from
stdin, sums the occurrences of each word, and writes the result to
stdout. The code in Example 2-2 implements the logic in reducer.py.

Example 2-2. python/MapReduce/HadoopStreaming/reducer.py

#!/usr/bin/env python

import sys

curr_word = None
curr_count = 0

Process each key-value pair from the mapper
for line in sys.stdin:

 # Get the key and value from the current line
 word, count = line.split('\t')

 # Convert the count to an int
 count = int(count)

 # If the current word is the same as the previous word,
 # increment its count, otherwise print the words count
 # to stdout
 if word == curr_word:
 curr_count += count
 else:

 # Write word and its number of occurrences as a key-value
 # pair to stdout
 if curr_word:
 print '{0}\t{1}'.format(curr_word, curr_count)

 curr_word = word

20 | Chapter 2: MapReduce with Python

 curr_count = count

Output the count for the last word
if curr_word == word:
 print '{0}\t{1}'.format(curr_word, curr_count)

Before attempting to execute the code, ensure that the mapper.py
and reducer.py files have execution permission. The following com‐
mand will enable this for both files:

$ chmod a+x mapper.py reducer.py

Also ensure that the first line of each file contains the proper path to
Python. This line enables mapper.py and reducer.py to execute as
standalone executables. The value #!/usr/bin/env python should
work for most systems, but if it does not, replace /usr/bin/env
python with the path to the Python executable on your system.

To test the Python programs locally before running them as a Map‐
Reduce job, they can be run from within the shell using the echo
and sort commands. It is highly recommended to test all programs
locally before running them across a Hadoop cluster.

$ echo 'jack be nimble jack be quick' | ./mapper.py
| sort -t 1 | ./reducer.py
be 2
jack 2
nimble 1
quick 1

Once the mapper and reducer programs are executing successfully
against tests, they can be run as a MapReduce application using the
Hadoop streaming utility. The command to run the Python pro‐
grams mapper.py and reducer.py on a Hadoop cluster is as follows:

$ $HADOOP_HOME/bin/hadoop jar
 $HADOOP_HOME/mapred/contrib/streaming/hadoop-streaming*.jar \
-files mapper.py,reducer.py \
-mapper mapper.py \
-reducer reducer.py \
-input /user/hduser/input.txt -output /user/hduser/output

The options used with the Hadoop streaming utility are listed in
Table 2-1.

Hadoop Streaming | 21

Table 2-1. Options for Hadoop streaming

Option Description

-files A command-separated list of !les to be copied to the MapReduce cluster

-mapper The command to be run as the mapper

-reducer The command to be run as the reducer

-input The DFS input path for the Map step

-output The DFS output directory for the Reduce step

mrjob
mrjob is a Python MapReduce library, created by Yelp, that wraps
Hadoop streaming, allowing MapReduce applications to be written
in a more Pythonic manner. mrjob enables multistep MapReduce
jobs to be written in pure Python. MapReduce jobs written with
mrjob can be tested locally, run on a Hadoop cluster, or run in the
cloud using Amazon Elastic MapReduce (EMR).

Writing MapReduce applications with mrjob has many benefits:

• mrjob is currently a very actively developed framework with
multiple commits every week.

• mrjob has extensive documentation, more than any other
framework or library that supports Python on Hadoop.

• mrjob applications can be executed and tested without having
Hadoop installed, enabling development and testing before
deploying to a Hadoop cluster.

• mrjob allows MapReduce applications to be written in a single
class, instead of writing separate programs for the mapper and
reducer.

While mrjob is a great solution, it does have its drawbacks. mrjob is
simplified, so it doesn’t give the same level of access to Hadoop that
other APIs offer. mrjob does not use typedbytes, so other libraries
may be faster.

Installation
The installation of mrjob is simple; it can be installed with pip by
using the following command:

$ pip install mrjob

22 | Chapter 2: MapReduce with Python

Or it can be installed from source (a git clone):
$ python setup.py install

WordCount in mrjob
Example 2-3 uses mrjob to implement the WordCount algorithm.

Example 2-3. python/MapReduce/mrjob/word_count.py

from mrjob.job import MRJob

class MRWordCount(MRJob):

 def mapper(self, _, line):
 for word in line.split():
 yield(word, 1)

 def reducer(self, word, counts):
 yield(word, sum(counts))

if __name__ == '__main__':
 MRWordCount.run()

To run the mrjob locally, the only thing needed is a body of text. To
run the job locally and count the frequency of words within a file
named input.txt, use the following command:

$ python word_count.py input.txt

The output depends on the contents of the input file, but should
look similar to Example 2-4.

Example 2-4. Output from word_count.py

"be" 2
"jack" 2
"nimble" 1
"quick" 1

What Is Happening
The MapReduce job is defined as the class, MRWordCount. Within
the mrjob library, the class that inherits from MRJob contains the
methods that define the steps of the MapReduce job. The steps
within an mrjob application are mapper, combiner, and reducer. The
class inheriting MRJob only needs to define one of these steps.

mrjob | 23

The mapper() method defines the mapper for the MapReduce job. It
takes key and value as arguments and yields tuples of (output_key,
output_value). In the WordCount example (Example 2-4), the map‐
per ignored the input key and split the input value to produce words
and counts.

The combiner() method defines the combiner for the MapReduce
job. The combiner is a process that runs after the mapper and before
the reducer. It receives, as input, all of the data emitted by the map‐
per, and the output of the combiner is sent to the reducer. The com‐
biner’s input is a key, which was yielded by the mapper, and a value,
which is a generator that yields all values yielded by one mapper that
corresponds to the key. The combiner yields tuples of (output_key,
output_value) as output.

The reducer() method defines the reducer for the MapReduce job.
It takes a key and an iterator of values as arguments and yields
tuples of (output_key, output_value). In Example 2-4, the reducer
sums the value for each key, which represents the frequency of
words in the input.

The final component of a MapReduce job written with the mrjob
library is the two lines at the end of the file:

if __name__ == '__main__':
 MRWordCount.run()

These lines enable the execution of mrjob; without them, the appli‐
cation will not work.

Executing mrjob
Executing a MapReduce application with mrjob is similar to execut‐
ing any other Python program. The command line must contain the
name of the mrjob application and the input file:

$ python mr_job.py input.txt

By default, mrjob writes output to stdout.

Multiple files can be passed to mrjob as inputs by specifying the file‐
names on the command line:

$ python mr_job.py input1.txt input2.txt input3.txt

mrjob can also handle input via stdin:
$ python mr_job.py < input.txt

24 | Chapter 2: MapReduce with Python

By default, mrjob runs locally, allowing code to be developed and
debugged before being submitted to a Hadoop cluster.

To change how the job is run, specify the -r/--runner option.
Table 2-2 contains a description of the valid choices for the runner
options.

Table 2-2. mrjob runner choices

-r inline (Default) Run in a single Python process

-r local Run locally in a few subprocesses simulating some Hadoop features

-r hadoop Run on a Hadoop cluster

-r emr Run on Amazon Elastic Map Reduce (EMR)

Using the runner option allows the mrjob program to be run on a
Hadoop cluster, with input being specified from HDFS:

$ python mr_job.py -r hadoop hdfs://input/input.txt

mrjob also allows applications to be run on EMR directly from the
command line:

$ python mr_job.py -r emr s3://input-bucket/input.txt

Top Salaries
Example 2-5 uses mrjob to compute employee top annual salaries
and gross pay. The dataset used is the salary information from the
city of Baltimore for 2014.

Example 2-5. python/MapReduce/mrjob/top_salary.py

from mrjob.job import MRJob
from mrjob.step import MRStep
import csv

cols = 'Name,JobTitle,AgencyID,Agency,HireDate,AnnualSalary,Gross
Pay'.split(',')

class salarymax(MRJob):

 def mapper(self, _, line):
 # Convert each line into a dictionary
 row = dict(zip(cols, [a.strip() for a in
csv.reader([line]).next()]))

 # Yield the salary

mrjob | 25

http://bit.ly/1KdvtCc

 yield 'salary', (float(row['AnnualSalary'][1:]), line)

 # Yield the gross pay
 try:
 yield 'gross', (float(row['GrossPay'][1:]), line)
 except ValueError:
 self.increment_counter('warn', 'missing gross', 1)

 def reducer(self, key, values):
 topten = []

 # For 'salary' and 'gross' compute the top 10
 for p in values:
 topten.append(p)
 topten.sort()
 topten = topten[-10:]

 for p in topten:
 yield key, p

 combiner = reducer

if __name__ == '__main__':
 salarymax.run()

Use the following command to execute the MapReduce job on
Hadoop:

$ python top_salary.py -r hadoop hdfs:///user/hduser/input/
salaries.csv

Chapter Summary
This chapter introduced the MapReduce programming model and
described how data flows through the different phases of the model.
Hadoop Streaming and mrjob were then used to highlight how
MapReduce jobs can be written in Python.

26 | Chapter 2: MapReduce with Python

	Programming
	Copyright
	Table of Contents
	Source Code
	Chapter 1. Hadoop Distributed File System (HDFS)
	Overview of HDFS
	Interacting with HDFS
	Common File Operations
	HDFS Command Reference

	Snakebite
	Installation
	Client Library
	CLI Client

	Chapter Summary

	Chapter 2. MapReduce with Python
	Data Flow
	Map
	Shuffle and Sort
	Reduce

	Hadoop Streaming
	How It Works
	A Python Example

	mrjob
	Installation
	WordCount in mrjob
	What Is Happening
	Executing mrjob
	Top Salaries

	Chapter Summary

	Chapter 3. Pig and Python
	WordCount in Pig
	WordCount in Detail

	Running Pig
	Execution Modes
	Interactive Mode
	Batch Mode

	Pig Latin
	Statements
	Loading Data
	Transforming Data
	Storing Data

	Extending Pig with Python
	Registering a UDF
	A Simple Python UDF
	String Manipulation
	Most Recent Movies

	Chapter Summary

	Chapter 4. Spark with Python
	WordCount in PySpark
	WordCount Described

	PySpark
	Interactive Shell
	Self-Contained Applications

	Resilient Distributed Datasets (RDDs)
	Creating RDDs from Collections
	Creating RDDs from External Sources
	RDD Operations

	Text Search with PySpark
	Chapter Summary

	Chapter 5. Workflow Management with Python
	Installation
	Workflows
	Tasks
	Target
	Parameters

	An Example Workflow
	Task.requires
	Task.output
	Task.run
	Parameters
	Execution

	Hadoop Workflows
	Configuration File
	MapReduce in Luigi
	Pig in Luigi

	Chapter Summary

