
CHAPTER 1

Hadoop Distributed File System
(HDFS)

The Hadoop Distributed File System (HDFS) is a Java-based dis‐
tributed, scalable, and portable filesystem designed to span large
clusters of commodity servers. The design of HDFS is based on GFS,
the Google File System, which is described in a paper published by
Google. Like many other distributed filesystems, HDFS holds a large
amount of data and provides transparent access to many clients dis‐
tributed across a network. Where HDFS excels is in its ability to
store very large files in a reliable and scalable manner.

HDFS is designed to store a lot of information, typically petabytes
(for very large files), gigabytes, and terabytes. This is accomplished
by using a block-structured filesystem. Individual files are split into
fixed-size blocks that are stored on machines across the cluster. Files
made of several blocks generally do not have all of their blocks
stored on a single machine.

HDFS ensures reliability by replicating blocks and distributing the
replicas across the cluster. The default replication factor is three,
meaning that each block exists three times on the cluster. Block-level
replication enables data availability even when machines fail.

This chapter begins by introducing the core concepts of HDFS and
explains how to interact with the filesystem using the native built-in
commands. After a few examples, a Python client library is intro‐
duced that enables HDFS to be accessed programmatically from
within Python applications.

1

http://research.google.com/archive/gfs.html


Overview of HDFS
The architectural design of HDFS is composed of two processes: a
process known as the NameNode holds the metadata for the filesys‐
tem, and one or more DataNode processes store the blocks that
make up the files. The NameNode and DataNode processes can run
on a single machine, but HDFS clusters commonly consist of a dedi‐
cated server running the NameNode process and possibly thousands
of machines running the DataNode process.

The NameNode is the most important machine in HDFS. It stores
metadata for the entire filesystem: filenames, file permissions, and
the location of each block of each file. To allow fast access to this
information, the NameNode stores the entire metadata structure in
memory. The NameNode also tracks the replication factor of blocks,
ensuring that machine failures do not result in data loss. Because the
NameNode is a single point of failure, a secondary NameNode can
be used to generate snapshots of the primary NameNode’s memory
structures, thereby reducing the risk of data loss if the NameNode
fails.

The machines that store the blocks within HDFS are referred to as
DataNodes. DataNodes are typically commodity machines with
large storage capacities. Unlike the NameNode, HDFS will continue
to operate normally if a DataNode fails. When a DataNode fails, the
NameNode will replicate the lost blocks to ensure each block meets
the minimum replication factor.

The example in Figure 1-1 illustrates the mapping of files to blocks
in the NameNode, and the storage of blocks and their replicas
within the DataNodes.

The following section describes how to interact with HDFS using
the built-in commands.

2 | Chapter 1: Hadoop Distributed File System (HDFS)



Figure 1-1. An HDFS cluster with a replication factor of two; the
NameNode contains the mapping of !les to blocks, and the DataNodes
store the blocks and their replicas

Interacting with HDFS
Interacting with HDFS is primarily performed from the command
line using the script named hdfs. The hdfs script has the following
usage:

$ hdfs COMMAND [-option <arg>]

The COMMAND argument instructs which functionality of HDFS will
be used. The -option argument is the name of a specific option for
the specified command, and <arg> is one or more arguments that
that are specified for this option.

Common File Operations
To perform basic file manipulation operations on HDFS, use the dfs
command with the hdfs script. The dfs command supports many
of the same file operations found in the Linux shell.

It is important to note that the hdfs command runs with the per‐
missions of the system user running the command. The following
examples are run from a user named “hduser.”

List Directory Contents
To list the contents of a directory in HDFS, use the -ls command:

$ hdfs dfs -ls
$ 

Interacting with HDFS | 3



Running the -ls command on a new cluster will not return any
results. This is because the -ls command, without any arguments,
will attempt to display the contents of the user’s home directory on
HDFS. This is not the same home directory on the host machine
(e.g., /home/$USER), but is a directory within HDFS.

Providing -ls with the forward slash (/) as an argument displays
the contents of the root of HDFS:

$ hdfs dfs -ls /
Found 2 items
drwxr-xr-x   - hadoop supergroup    0 2015-09-20 14:36 /hadoop
drwx------   - hadoop supergroup    0 2015-09-20 14:36 /tmp

The output provided by the hdfs dfs command is similar to the
output on a Unix filesystem. By default, -ls displays the file and
folder permissions, owners, and groups. The two folders displayed
in this example are automatically created when HDFS is formatted.
The hadoop user is the name of the user under which the Hadoop
daemons were started (e.g., NameNode and DataNode), and the
supergroup is the name of the group of superusers in HDFS (e.g.,
hadoop).

Creating a Directory
Home directories within HDFS are stored in /user/$HOME. From
the previous example with -ls, it can be seen that the /user directory
does not currently exist. To create the /user directory within HDFS,
use the -mkdir command:

$ hdfs dfs -mkdir /user

To make a home directory for the current user, hduser, use the
-mkdir command again:

$ hdfs dfs -mkdir /user/hduser

Use the -ls command to verify that the previous directories were
created:

$ hdfs dfs -ls -R /user
drwxr-xr-x   - hduser supergroup    0 2015-09-22 18:01 /user/
hduser

4 | Chapter 1: Hadoop Distributed File System (HDFS)



Copy Data onto HDFS
After a directory has been created for the current user, data can be
uploaded to the user’s HDFS home directory with the -put com‐
mand:

$ hdfs dfs -put /home/hduser/input.txt /user/hduser

This command copies the file /home/hduser/input.txt from the local
filesystem to /user/hduser/input.txt on HDFS.

Use the -ls command to verify that input.txt was moved to HDFS:
$ hdfs dfs -ls 
Found 1 items
-rw-r--r--   1 hduser supergroup         52 2015-09-20 13:20 
input.txt

Retrieving Data from HDFS
Multiple commands allow data to be retrieved from HDFS. To sim‐
ply view the contents of a file, use the -cat command. -cat reads a
file on HDFS and displays its contents to stdout. The following com‐
mand uses -cat to display the contents of /user/hduser/input.txt:

$ hdfs dfs -cat input.txt
jack be nimble
jack be quick
jack jumped over the candlestick

Data can also be copied from HDFS to the local filesystem using the
-get command. The -get command is the opposite of the -put
command:

$ hdfs dfs -get input.txt /home/hduser

This command copies input.txt from /user/hduser on HDFS
to /home/hduser on the local filesystem.

HDFS Command Reference
The commands demonstrated in this section are the basic file opera‐
tions needed to begin using HDFS. Below is a full listing of file
manipulation commands possible with hdfs dfs. This listing can
also be displayed from the command line by specifying hdfs dfs
without any arguments. To get help with a specific option, use either
hdfs dfs -usage <option> or hdfs dfs -help <option>.

Interacting with HDFS | 5



Usage: hadoop fs [generic options]
    [-appendToFile <localsrc> ... <dst>]
    [-cat [-ignoreCrc] <src> ...]
    [-checksum <src> ...]
    [-chgrp [-R] GROUP PATH...]
    [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
    [-chown [-R] [OWNER][:[GROUP]] PATH...]
    [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
    [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... 
<localdst>]
    [-count [-q] [-h] <path> ...]
    [-cp [-f] [-p | -p[topax]] <src> ... <dst>]
    [-createSnapshot <snapshotDir> [<snapshotName>]]
    [-deleteSnapshot <snapshotDir> <snapshotName>]
    [-df [-h] [<path> ...]]
    [-du [-s] [-h] <path> ...]
    [-expunge]
    [-find <path> ... <expression> ...]
    [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
    [-getfacl [-R] <path>]
    [-getfattr [-R] {-n name | -d} [-e en] <path>]
    [-getmerge [-nl] <src> <localdst>]
    [-help [cmd ...]]
    [-ls [-d] [-h] [-R] [<path> ...]]
    [-mkdir [-p] <path> ...]
    [-moveFromLocal <localsrc> ... <dst>]
    [-moveToLocal <src> <localdst>]
    [-mv <src> ... <dst>]
    [-put [-f] [-p] [-l] <localsrc> ... <dst>]
    [-renameSnapshot <snapshotDir> <oldName> <newName>]
    [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
    [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
    [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set 
<acl_spec> <path>]]
    [-setfattr {-n name [-v value] | -x name} <path>]
    [-setrep [-R] [-w] <rep> <path> ...]
    [-stat [format] <path> ...]
    [-tail [-f] <file>]
    [-test -[defsz] <path>]
    [-text [-ignoreCrc] <src> ...]
    [-touchz <path> ...]
    [-truncate [-w] <length> <path> ...]
    [-usage [cmd ...]]

Generic options supported are
-conf <configuration file>     specify an application configu-
ration file
-D <property=value>            use value for given property
-fs <local|namenode:port>      specify a namenode
-jt <local|resourcemanager:port>    specify a ResourceManager
-files <comma separated list of files>    specify comma separa-

6 | Chapter 1: Hadoop Distributed File System (HDFS)



ted files to be copied to the map reduce cluster
-libjars <comma separated list of jars>    specify comma sepa-
rated jar files to include in the classpath.
-archives <comma separated list of archives>    specify comma 
separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

The next section introduces a Python library that allows HDFS to be
accessed from within Python applications.

Snakebite
Snakebite is a Python package, created by Spotify, that provides a
Python client library, allowing HDFS to be accessed programmati‐
cally from Python applications. The client library uses protobuf
messages to communicate directly with the NameNode. The Snake‐
bite package also includes a command-line interface for HDFS that
is based on the client library.

This section describes how to install and configure the Snakebite
package. Snakebite’s client library is explained in detail with multiple
examples, and Snakebite’s built-in CLI is introduced as a Python
alternative to the hdfs dfs command.

Installation
Snakebite requires Python 2 and python-protobuf 2.4.1 or higher.
Python 3 is currently not supported.

Snakebite is distributed through PyPI and can be installed using
pip:

$ pip install snakebite

Client Library
The client library is written in Python, uses protobuf messages, and
implements the Hadoop RPC protocol for talking to the NameNode.
This enables Python applications to communicate directly with
HDFS and not have to make a system call to hdfs dfs.

List Directory Contents
Example 1-1 uses the Snakebite client library to list the contents of
the root directory in HDFS.

Snakebite | 7



Example 1-1. python/HDFS/list_directory.py

from snakebite.client import Client

client = Client('localhost', 9000)
for x in client.ls(['/']):
   print x

The most important line of this program, and every program that
uses the client library, is the line that creates a client connection to
the HDFS NameNode:

client = Client('localhost', 9000)

The Client() method accepts the following parameters:

host (string)
Hostname or IP address of the NameNode

port (int)
RPC port of the NameNode

hadoop_version (int)
The Hadoop protocol version to be used (default: 9)

use_trash (boolean)
Use trash when removing files

effective_use (string)
Effective user for the HDFS operations (default: None or cur‐
rent user)

The host and port parameters are required and their values are
dependent upon the HDFS configuration. The values for these
parameters can be found in the hadoop/conf/core-site.xml configura‐
tion file under the property fs.defaultFS:

<property>
   <name>fs.defaultFS</name>
   <value>hdfs://localhost:9000</value>
</property>

For the examples in this section, the values used for host and port
are localhost and 9000, respectively.

After the client connection is created, the HDFS filesystem can be
accessed. The remainder of the previous application used the ls
command to list the contents of the root directory in HDFS:

8 | Chapter 1: Hadoop Distributed File System (HDFS)



for x in client.ls(['/']):
   print x

It is important to note that many of methods in Snakebite return
generators. Therefore they must be consumed to execute. The ls
method takes a list of paths and returns a list of maps that contain
the file information.

Executing the list_directory.py application yields the following
results:

$ python list_directory.py 
{'group': u'supergroup', 'permission': 448, 'file_type': 'd', 
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442752574936L, 'length': 0L, 'blocksize': 0L, 
'owner': u'hduser', 'path': '/tmp'}
{'group': u'supergroup', 'permission': 493, 'file_type': 'd', 
'access_time': 0L, 'block_replication': 0, 'modifica-
tion_time': 1442742056276L, 'length': 0L, 'blocksize': 0L, 
'owner': u'hduser', 'path': '/user'}

Create a Directory
Use the mkdir() method to create directories on HDFS.
Example 1-2 creates the directories /foo/bar and /input on HDFS.

Example 1-2. python/HDFS/mkdir.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.mkdir(['/foo/bar', '/input'], create_parent=True):
   print p

Executing the mkdir.py application produces the following results:
$ python mkdir.py 
{'path': '/foo/bar', 'result': True}
{'path': '/input', 'result': True}

The mkdir() method takes a list of paths and creates the specified
paths in HDFS. This example used the create_parent parameter to
ensure that parent directories were created if they did not already
exist. Setting create_parent to True is analogous to the mkdir -p
Unix command.

Snakebite | 9



Deleting Files and Directories
Deleting files and directories from HDFS can be accomplished with
the delete() method. Example 1-3 recursively deletes the /foo
and /bar directories, created in the previous example.

Example 1-3. python/HDFS/delete.py

from snakebite.client import Client

client = Client('localhost', 9000)
for p in client.delete(['/foo', '/input'], recurse=True):
   print p

Executing the delete.py application produces the following results:
$ python delete.py 
{'path': '/foo', 'result': True}
{'path': '/input', 'result': True}

Performing a recursive delete will delete any subdirectories and files
that a directory contains. If a specified path cannot be found, the
delete method throws a FileNotFoundException. If recurse is not
specified and a subdirectory or file exists, DirectoryException is
thrown.

The recurse parameter is equivalent to rm -rf and should be used
with care.

Retrieving Data from HDFS
Like the hdfs dfs command, the client library contains multiple
methods that allow data to be retrieved from HDFS. To copy files
from HDFS to the local filesystem, use the copyToLocal() method.
Example 1-4 copies the file /input/input.txt from HDFS and places it
under the /tmp directory on the local filesystem.

Example 1-4. python/HDFS/copy_to_local.py

from snakebite.client import Client

client = Client('localhost', 9000)
for f in client.copyToLocal(['/input/input.txt'], '/tmp'):
   print f

Executing the copy_to_local.py application produces the following
result:

10 | Chapter 1: Hadoop Distributed File System (HDFS)



$ python copy_to_local.py 
{'path': '/tmp/input.txt', 'source_path': '/input/input.txt', 
'result': True, 'error': ''}

To simply read the contents of a file that resides on HDFS, the
text() method can be used. Example 1-5 displays the content
of /input/input.txt.

Example 1-5. python/HDFS/text.py

from snakebite.client import Client

client = Client('localhost', 9000)
for l in client.text(['/input/input.txt']):
   print l

Executing the text.py application produces the following results:
$ python text.py 
jack be nimble
jack be quick
jack jumped over the candlestick

The text() method will automatically uncompress and display gzip
and bzip2 files.

CLI Client
The CLI client included with Snakebite is a Python command-line
HDFS client based on the client library. To execute the Snakebite
CLI, the hostname or IP address of the NameNode and RPC port of
the NameNode must be specified. While there are many ways to
specify these values, the easiest is to create a ~.snakebiterc configura‐
tion file. Example 1-6 contains a sample config with the NameNode
hostname of localhost and RPC port of 9000.

Example 1-6. ~/.snakebiterc

{
    "config_version": 2,
    "skiptrash": true,
    "namenodes": [
        {"host": "localhost", "port": 9000, "version": 9},
    ]
}

Snakebite | 11



The values for host and port can be found in the hadoop/conf/core-
site.xml configuration file under the property fs.defaultFS.

For more information on configuring the CLI, see the Snakebite CLI
documentation online.

Usage
To use the Snakebite CLI client from the command line, simply use
the command snakebite. Use the ls option to display the contents
of a directory:

$ snakebite ls /
Found 2 items
drwx------   - hadoop    supergroup    0 2015-09-20 14:36 /tmp
drwxr-xr-x   - hadoop    supergroup    0 2015-09-20 11:40 /user

Like the hdfs dfs command, the CLI client supports many familiar
file manipulation commands (e.g., ls, mkdir, df, du, etc.).

The major difference between snakebite and hdfs dfs is that
snakebite is a pure Python client and does not need to load any
Java libraries to communicate with HDFS. This results in quicker
interactions with HDFS from the command line.

CLI Command Reference
The following is a full listing of file manipulation commands possi‐
ble with the snakebite CLI client. This listing can be displayed from
the command line by specifying snakebite without any arguments.
To view help with a specific command, use snakebite [cmd] --
help, where cmd is a valid snakebite command.

snakebite [general options] cmd [arguments]
general options:
  -D --debug               Show debug information
  -V --version             Hadoop protocol version (default:9)
  -h --help                show help
  -j --json                JSON output
  -n --namenode            namenode host
  -p --port                namenode RPC port (default: 8020)
  -v --ver                 Display snakebite version

commands:
  cat [paths]                  copy source paths to stdout
  chgrp <grp> [paths]          change group
  chmod <mode> [paths]         change file mode (octal)
  chown <owner:grp> [paths]    change owner
  copyToLocal [paths] dst      copy paths to local 

12 | Chapter 1: Hadoop Distributed File System (HDFS)

http://snakebite.readthedocs.org/en/latest/
http://snakebite.readthedocs.org/en/latest/


                                 file system destination
  count [paths]                display stats for paths
  df                           display fs stats
  du [paths]                   display disk usage statistics
  get file dst                 copy files to local 
                                 file system destination
  getmerge dir dst             concatenates files in source dir
                                 into destination local file
  ls [paths]                   list a path
  mkdir [paths]                create directories
  mkdirp [paths]               create directories and their 
                                 parents
  mv [paths] dst               move paths to destination
  rm [paths]                   remove paths
  rmdir [dirs]                 delete a directory
  serverdefaults               show server information
  setrep <rep> [paths]         set replication factor
  stat [paths]                 stat information
  tail path                    display last kilobyte of the 
                                 file to stdout
  test path                    test a path
  text path [paths]            output file in text format
  touchz [paths]               creates a file of zero length
  usage <cmd>                  show cmd usage

to see command-specific options use: snakebite [cmd] --help

Chapter Summary
This chapter introduced and described the core concepts of HDFS.
It explained how to interact with the filesystem using the built-in
hdfs dfs command. It also introduced the Python library, Snake‐
bite. Snakebite’s client library was explained in detail with multiple
examples. The snakebite CLI was also introduced as a Python alter‐
native to the hdfs dfs command.

Chapter Summary | 13


	Programming
	Copyright
	Table of Contents
	Source Code
	Chapter 1. Hadoop Distributed File System (HDFS)
	Overview of HDFS
	Interacting with HDFS
	Common File Operations
	HDFS Command Reference

	Snakebite
	Installation
	Client Library
	CLI Client

	Chapter Summary

	Chapter 2. MapReduce with Python
	Data Flow
	Map
	Shuffle and Sort
	Reduce

	Hadoop Streaming
	How It Works
	A Python Example

	mrjob
	Installation
	WordCount in mrjob
	What Is Happening
	Executing mrjob
	Top Salaries

	Chapter Summary

	Chapter 3. Pig and Python
	WordCount in Pig
	WordCount in Detail

	Running Pig
	Execution Modes
	Interactive Mode
	Batch Mode

	Pig Latin
	Statements
	Loading Data
	Transforming Data
	Storing Data

	Extending Pig with Python
	Registering a UDF
	A Simple Python UDF
	String Manipulation
	Most Recent Movies

	Chapter Summary

	Chapter 4. Spark with Python
	WordCount in PySpark
	WordCount Described

	PySpark
	Interactive Shell
	Self-Contained Applications

	Resilient Distributed Datasets (RDDs)
	Creating RDDs from Collections
	Creating RDDs from External Sources
	RDD Operations

	Text Search with PySpark
	Chapter Summary

	Chapter 5. Workflow Management with Python
	Installation
	Workflows
	Tasks
	Target
	Parameters

	An Example Workflow
	Task.requires
	Task.output
	Task.run
	Parameters
	Execution

	Hadoop Workflows
	Configuration File
	MapReduce in Luigi
	Pig in Luigi

	Chapter Summary


