
CHAPTER 3

Pig and Python

Pig is composed of two major parts: a high-level data flow language
called Pig Latin, and an engine that parses, optimizes, and executes
the Pig Latin scripts as a series of MapReduce jobs that are run on a
Hadoop cluster. Compared to Java MapReduce, Pig is easier to write,
understand, and maintain because it is a data transformation lan‐
guage that allows the processing of data to be described as a
sequence of transformations. Pig is also highly extensible through
the use of the User Defined Functions (UDFs) which allow custom
processing to be written in many languages, such as Python.

An example of a Pig application is the Extract, Transform, Load
(ETL) process that describes how an application extracts data from a
data source, transforms the data for querying and analysis purposes,
and loads the result onto a target data store. Once Pig loads the data,
it can perform projections, iterations, and other transformations.
UDFs enable more complex algorithms to be applied during the
transformation phase. After the data is done being processed by Pig,
it can be stored back in HDFS.

This chapter begins with an example Pig script. Pig and Pig Latin are
then introduced and described in detail with examples. The chapter
concludes with an explanation of how Pig’s core features can be
extended through the use of Python.

27



WordCount in Pig
Example 3-1 implements the WordCount algorithm in Pig. It
assumes that a a data file, input.txt, is loaded in HDFS under /user/
hduser/input, and output will be placed in HDFS under /user/
hduser/output.

Example 3-1. pig/wordcount.pig

%default INPUT '/user/hduser/input/input.txt';
%default OUTPUT '/user/hduser/output';

-- Load the data from the file system into the relation records
records = LOAD '$INPUT';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0)) 
AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
word_counts = FOREACH grouped_terms GENERATE COUNT(terms), group;

-- Store the result
STORE word_counts INTO '$OUTPUT';

To execute the Pig script, simply call Pig from the command line
and pass it the name of the script to run:

$ pig wordcount.pig

While the job is running, a lot of text will be printed to the console.
Once the job is complete, a success message, similar to the one
below, will be displayed:

2015-09-26 14:15:10,030 [main] INFO  org.apache.pig.back-
end.hadoop.executionengine.mapReduceLayer.MapReduceLauncher - 
Success!
2015-09-26 14:15:10,049 [main] INFO  org.apache.pig.Main - Pig 
script completed in 18 seconds and 514 milliseconds (18514 ms)

The results of the wordcount.pig script are displayed in Example 3-2
and can be found in HDFS under /user/hduser/output/pig_word‐
count/part-r-00000.

28 | Chapter 3: Pig and Python



Example 3-2. /user/hduser/output/pig_wordcount/part-r-00000

2    be
1    the
3    jack
1    over
1    quick
1    jumped
1    nimble
1    candlestick

WordCount in Detail
This section describes each Pig Latin statement in the wordcount.pig
script.

The first statement loads data from the filesystem and stores it in the
relation records:

records = LOAD '/user/hduser/input/input.txt';

The second statement splits each line of text using the TOKENIZE
function and eliminates nesting using the FLATTEN operator:

terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray)
$0)) AS word;

The third statement uses the GROUP operator to group the tuples that
have the same field:

grouped_terms = GROUP terms BY word;

The fourth statement iterates over all of the terms in each bag and
uses the COUNT function to return the sum:

word_counts = FOREACH grouped_terms GENERATE COUNT(terms), 
group;

The fifth and final statement stores the results in HDFS:
STORE word_counts INTO '/user/hduser/output/pig_wordcount'

Running Pig
Pig contains multiple modes that can be specified to configure how
Pig scripts and Pig statements will be executed.

Execution Modes
Pig has two execution modes: local and MapReduce.

Running Pig | 29



Running Pig in local mode only requires a single machine. Pig will
run on the local host and access the local filesystem. To run Pig in
local mode, use the -x local flag:

$ pig -x local ...

Running Pig in MapReduce mode requires access to a Hadoop clus‐
ter. MapReduce mode executes Pig statements and jobs on the clus‐
ter and accesses HDFS. To run Pig in MapReduce mode, simply call
Pig from the command line or use the -x mapreduce flag:

$ pig ...
or
$ pig -x mapreduce ...

Interactive Mode
Pig can be run interactively in the Grunt shell. To invoke the Grunt
shell, simply call Pig from the command line and specify the desired
execution mode. The following example starts the Grunt shell in
local mode:

pig -x local
...
grunt>

Once the Grunt shell is initialized, Pig Latin statements can be
entered and executed in an interactive manner. Running Pig interac‐
tively is a great way to learn Pig.

The following example reads /etc/passwd and displays the usernames
from within the Grunt shell:

grunt> A = LOAD '/etc/passwd' using PigStorage(':');
grunt> B = FOREACH A GENERATE $0 as username;
grunt> DUMP B;

Batch Mode
Batch mode allows Pig to execute Pig scripts in local or MapReduce
mode.

The Pig Latin statements in Example 3-3 read a file named passwd
and use the STORE operator to store the results in a directory called
user_id.out. Before executing this script, ensure that /etc/passwd is
copied to the current working directory if Pig will be run in local
mode, or to HDFS if Pig will be executed in MapReduce mode.

30 | Chapter 3: Pig and Python



Example 3-3. pig/user_id.pig

A = LOAD 'passwd' using PigStorage(':');
B = FOREACH A GENERATE $0 as username;
STORE B INTO 'user_id.out';

Use the following command to execute the user_id.pig script on the
local machine:

$ pig -x local user_id.pig

Pig Latin
This section describes the basic concepts of the Pig Latin language,
allowing those new to the language to understand and write basic
Pig scripts. For a more comprehensive overview of the language,
visit the Pig online documentation.

All of the examples in this section load and process data from the
tab-delimited file, resources/students (Example 3-4).

Example 3-4. resources/students

john    21    3.89
sally    19    2.56
alice    22    3.76
doug    19    1.98
susan    26    3.25

Statements
Statements are the basic constructs used to process data in Pig. Each
statement is an operator that takes a relation as an input, performs a
transformation on that relation, and produces a relation as an out‐
put. Statements can span multiple lines, but all statements must end
with a semicolon (;).

The general form of each Pig script is as follows:

1. A LOAD statement that reads the data from the filesystem
2. One or more statements to transform the data
3. A DUMP or STORE statement to view or store the results, respec‐

tively

Pig Latin | 31

http://pig.apache.org/docs/r0.14.0/index.html


Loading Data
The LOAD operator is used to load data from the system into Pig. The
format of the LOAD operator is as follows:

LOAD 'data' [USING function] [AS schema];

Where 'data' is the name of the file or directory, in quotes, to be
loaded. If a directory name is not specified, all of the files within the
directory are loaded.

The USING keyword is optional and is used to specify a function to
parse the incoming data. If the USING keyword is omitted, the
default loading function, PigStorage, is used. The default delimiter is
the tab character ('\t').

The AS keyword allows a schema to be defined for the data being
loaded. Schemas enable names and datatypes to be declared for indi‐
vidual fields. The following example defines a schema for the data
being loaded from the file input.txt. If no schema is defined, the
fields are not named and default to type bytearray.

A = LOAD 'students' AS (name:chararray, age:int);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

Transforming Data
Pig contains many operators that enable complex transforming of
data. The most common operators are FILTER, FOREACH, and GROUP.

FILTER
The FILTER operator works on tuples or rows of data. It selects
tuples from a relation based on a condition.

The following examples use the relation A that contains student data:
A = LOAD 'students' AS (name:chararray, age:int, gpa:float);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)

32 | Chapter 3: Pig and Python



(doug,19,1.98)
(susan,26,3.25)

The following example filters out any students under the age of 20,
and stores the results in a relation R:

R = FILTER A BY age >= 20;

DUMP R;
(john,21,3.89)
(alice,22,3.76)
(susan,26,3.25)

Condition statements can use the AND, OR, and NOT operators to cre‐
ate more complex FILTER statements. The following example filters
out any students with an age less than 20 or a GPA less than or equal
to 3.5, and stores the results in a relation R:

R = FILTER A BY (age >= 20) AND (gpa > 3.5)

DUMP R;
(john,21,3.89)
(alice,22,3.76)

FOREACH
While the FILTER operator works on rows of data, the FOREACH oper‐
ator works on columns of data and is similar to the SELECT state‐
ment in SQL.

The following example uses the asterisk (*) to project all of the fields
from relation A onto relation X:

R = FOREACH A GENERATE *;

DUMP R;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

The following example uses field names to project the age and gpa
columns from relation A onto relation X:

R = FOREACH A GENERATE age, gpa;

DUMP R;
(21,3.89)
(19,2.56)
(22,3.76)

Pig Latin | 33



(19,1.98)
(26,3.25)

GROUP
The GROUP operator groups together tuples that have the same group
key into one or more relations.

The following example groups the student data by age and stores the
result into relation B:

B = GROUP A BY age;

DUMP B;
(19,{(doug,19,1.98),(sally,19,2.56)})
(21,{(john,21,3.89)})
(22,{(alice,22,3.76)})
(26,{(susan,26,3.25)})

The result of a GROUP operation is a relation that has one tuple per
group. This tuple has two fields: the first field is named group and is
of the type of the grouped key; the second field is a bag that takes
the name of the original relation. To clarify the structure of relation
B, the DESCRIBE and ILLUSTRATE operations can be used:

DESCRIBE B;
B: {group: int,A: {(name: chararray,age: int,gpa: float)}}

ILLUSTRATE B;
------------------------------------------------------------
| B  | group:int  | A:bag{:tuple(name:chararray,            |
                    age:int,gpa:float)}                     | 
-------------------------------------------------------------
|    | 19         | {(sally, 19, 2.56), (doug, 19, 1.98)}   | 
-------------------------------------------------------------

Using the FOREACH operator, the fields in the previous relation, B, can
be referred to by names group and A:

C = FOREACH B GENERATE group, A.name;

DUMP C;
(19,{(doug),(sally)})
(21,{(john)})
(22,{(alice)})
(26,{(susan)})

34 | Chapter 3: Pig and Python



Storing Data
The STORE operator is used to execute previous Pig statements and
store the results on the filesystem. The format of the STORE operator
is as follows:

STORE alias INTO 'directory' [USING function];

Where alias is the name of the relation to store, and 'directory'
is the name of the storage directory, in quotes. If the directory
already exists, the STORE operation will fail. The output files will be
named part-nnnnn and are written to the specified directory.

The USING keyword is optional and is used to specify a function to
store the data. If the USING keyword is omitted, the default storage
function, PigStorage, is used. The following example specifies the
PigStorage function to store a file with pipe-delimited fields:

A = LOAD 'students' AS (name:chararray, age:int, gpa:float);

DUMP A;
(john,21,3.89)
(sally,19,2.56)
(alice,22,3.76)
(doug,19,1.98)
(susan,26,3.25)

STORE A INTO 'output' USING PigStorage('|');

CAT output;
john|21|3.89
sally|19|2.56
alice|22|3.76
doug|19|1.98
susan|26|3.25

The provided Pig Latin statements are great general-purpose com‐
puting constructs, but are not capable of expressing complex algo‐
rithms. The next section describes how to extend the functionality
of Pig with Python.

Extending Pig with Python
Pig provides extensive support for custom processing through User
Defined Functions (UDFs). Pig currently supports UDFs in six lan‐
guages: Java, Jython, Python, JavaScript, Ruby, and Groovy.

Extending Pig with Python | 35



When Pig executes, it automatically detects the usage of a UDF. To
run Python UDFs, Pig invokes the Python command line and
streams data in and out of it.

Registering a UDF
Before a Python UDF can be used in a Pig script, it must be regis‐
tered so Pig knows where to look when the UDF is called. To regis‐
ter a Python UDF file, use Pig’s REGISTER statement:

REGISTER 'udfs/myudf.py' USING streaming_python AS my_udf;

Once the UDF is registered, it can be called from within the Pig
script:

relation = FOREACH data GENERATE my_udf.function(field);

In this example the UDF, referenced as my_udf, contains a function
called function.

A Simple Python UDF
A simple Python UDF, located in pig/udfs/my_!rst_udf.py, that
returns the integer value 1 each time it is called, is shown in
Example 3-5.

Example 3-5. pig/udfs/my_!rst_udf.py

from pig_util import outputSchema

@outputSchema('value:int')
def return_one():
   """
   Return the integer value 1
   """
   return 1

Some important things to note in this Python script are the from
statement on the first line, and the output decorator, @outputSchema
decorator, on the third line. These lines enable the Python UDF to
define an alias and datatype for the data being returned from the
UDF.

The Pig script in Example 3-6 registers the Python UDF and calls
the return_one() function in a FOREACH statement.

36 | Chapter 3: Pig and Python



Example 3-6. pig/simple_udf.pig

REGISTER 'udfs/my_first_udf.py' USING streaming_python AS pyudfs;

A = LOAD '../resources/input.txt';
B = FOREACH A GENERATE pyudfs.return_one();
DUMP B;

When the Pig script is executed, it will generate an integer value 1
for each line in the input file. Use the following command to execute
the script (sample output is shown as well):

$ pig -x local simple_udf.pig
...
(1)
(1)
(1)

String Manipulation
Python UDFs are an easy way of extending Pig’s functionality and
an easy way to transform and process data.

The Python UDF in Example 3-7 contains two functions: reverse()
and num_chars(). The reverse() function takes in a chararray and
returns the chararray in reverse order. The num_chars() function
takes in a chararray and returns the number of characters in the
chararray.

Example 3-7. pig/udfs/string_funcs.py

from pig_util import outputSchema

@outputSchema('word:chararray')
def reverse(word):
   """
   Return the reverse text of the provided word
   """
   return word[::-1]

@outputSchema('length:int')
def num_chars(word):
   """
   Return the length of the provided word
   """
   return len(word)

Extending Pig with Python | 37



The Pig script in Example 3-8 loads a text file and applies the
reverse() and num_chars() Python functions to each unique word.

Example 3-8. pig/playing_with_words.pig

REGISTER 'udfs/string_funcs.py' USING streaming_python AS 
string_udf;

-- Load the data from the file system
records = LOAD '../resources/input.txt';

-- Split each line of text and eliminate nesting
terms = FOREACH records GENERATE FLATTEN(TOKENIZE((chararray) $0)) 
AS word;

-- Group similar terms
grouped_terms = GROUP terms BY word;

-- Count the number of tuples in each group
unique_terms = FOREACH grouped_terms GENERATE group as word;

-- Calculate the number of characters in each term
term_length = FOREACH unique_terms GENERATE word, 
string_udf.num_chars(word) as length;

-- Display the terms and their length
DUMP term_length;

-- Reverse each word  
reverse_terms = FOREACH unique_terms GENERATE word, 
string_udf.reverse(word) as reverse_word;

-- Display the terms and the reverse terms
DUMP reverse_terms;

Use the following command to execute the script (sample output
shown):

$ pig -x local playing_with_words.pig
...
(be,2)
(the,3)
(jack,4)
(over,4)
(quick,5)
(jumped,6)
(nimble,6)
(candlestick,11)
...
(be,eb)

38 | Chapter 3: Pig and Python



(the,eht)
(jack,kcaj)
(over,revo)
(quick,kciuq)
(jumped,depmuj)
(nimble,elbmin)
(candlestick,kcitseldnac)

Most Recent Movies
The following example uses movie data from the groupLens datasets
and external libraries to calculate the 10 most recent movies.

The Python UDF in Example 3-9 contains two functions:
parse_title() and days_since_release(). The parse_title()
function uses Python’s regular expression module to remove the
release year from a movie’s title. The days_since_release() func‐
tion uses the datetime module to calculate the number of days
between the current day and a movie’s release date.

Example 3-9. pig/udfs/movies_udf.py

from pig_util import outputSchema
from datetime import datetime
import re

@outputSchema('title:chararray')
def parse_title(title):
   """
   Return the title without the year
   """
   return re.sub(r'\s*\(\d{4}\)','', title)

@outputSchema('days_since_release:int')
def days_since_release(date):
   """
   Calculate the number of days since the titles release
   """
   if date is None:
      return None

   today = datetime.today()
   release_date = datetime.strptime(date, '%d-%b-%Y')
   delta = today - release_date
   return delta.days

Extending Pig with Python | 39

http://grouplens.org/datasets/movielens/


The Pig script in Example 3-10 uses the Python UDFs to determine
the 10 most recent movies.

Example 3-10. pig/recent_movies.pig

REGISTER 'udfs/movies_udf.py' USING streaming_python AS movies_udf;

-- Load the data from the file system
records = LOAD '../resources/movies' USING PigStorage('|') 
   AS (id:int, title:chararray, release_date:chararray);

-- Parse the titles and determine how many days since the release 
date
titles = FOREACH records GENERATE movies_udf.parse_title(title), 
movies_udf.days_since_release(release_date);

-- Order the movies by the time since release
most_recent = ORDER titles BY days_since_release ASC;

-- Get the ten most recent movies
top_ten = LIMIT most_recent 10;

-- Display the top ten most recent movies
DUMP top_ten;

The following command is used to execute the script (sample output
shown):

$ pig -x local recent_movies.pig 
...
(unknown,)
(Apt Pupil,6183)
(Mighty, The,6197)
(City of Angels,6386)
(Big One, The,6393)
(Lost in Space,6393)
(Mercury Rising,6393)
(Spanish Prisoner, The,6393)
(Hana-bi,6400)
(Object of My Affection, The,6400)

Chapter Summary
This chapter introduced and Pig and Pig Latin. It described the basic
concepts of Pig Latin, allowing simple Pig scripts to be created and
executed. It also introduced how to extend the functionality of Pig
Latin with Python UDFs.

40 | Chapter 3: Pig and Python


	Programming
	Copyright
	Table of Contents
	Source Code
	Chapter 1. Hadoop Distributed File System (HDFS)
	Overview of HDFS
	Interacting with HDFS
	Common File Operations
	HDFS Command Reference

	Snakebite
	Installation
	Client Library
	CLI Client

	Chapter Summary

	Chapter 2. MapReduce with Python
	Data Flow
	Map
	Shuffle and Sort
	Reduce

	Hadoop Streaming
	How It Works
	A Python Example

	mrjob
	Installation
	WordCount in mrjob
	What Is Happening
	Executing mrjob
	Top Salaries

	Chapter Summary

	Chapter 3. Pig and Python
	WordCount in Pig
	WordCount in Detail

	Running Pig
	Execution Modes
	Interactive Mode
	Batch Mode

	Pig Latin
	Statements
	Loading Data
	Transforming Data
	Storing Data

	Extending Pig with Python
	Registering a UDF
	A Simple Python UDF
	String Manipulation
	Most Recent Movies

	Chapter Summary

	Chapter 4. Spark with Python
	WordCount in PySpark
	WordCount Described

	PySpark
	Interactive Shell
	Self-Contained Applications

	Resilient Distributed Datasets (RDDs)
	Creating RDDs from Collections
	Creating RDDs from External Sources
	RDD Operations

	Text Search with PySpark
	Chapter Summary

	Chapter 5. Workflow Management with Python
	Installation
	Workflows
	Tasks
	Target
	Parameters

	An Example Workflow
	Task.requires
	Task.output
	Task.run
	Parameters
	Execution

	Hadoop Workflows
	Configuration File
	MapReduce in Luigi
	Pig in Luigi

	Chapter Summary


